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Abstract

We introduce the concept of interval-valued fuzzy congruences on a semigroup S and we
obtain some important results: First, for any interval-valued fuzzy congruence R on a group
G, the interval-valued congruence class Re is an interval-valued fuzzy normal subgroup of
G. Second, for any interval-valued fuzzy congruence R on a groupoid S, we show that a
binary operation ∗ an S/R is well-defined and also we obtain some results related to additional
conditions for S. Also we improve that for any two interval-valued fuzzy congruences R
and Q on a semigroup S such that R ⊂ Q, there exists a unique semigroup homomorphism
g : S/R→ S/G.
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1. Introduction

As a generalization of fuzzy sets introduced by Zadeh [1], Zadeh [2] also suggested the
concept of interval-valued fuzzy sets. After that time, Biswas [3] applied it to group theory,
and Gorzalczany [4] introduced a method of inference in approximate reasoning by using
interval-valued fuzzy sets. Moreover, Mondal and Samanta [5] introduced the concept of
interval-valued fuzzy topology and investigated some of it’s properties. In particular, Roy
and Biswas [6] introduced the notion of interval-valued fuzzy relations and studied some of
it’s properties. Recently, Jun et al. [7] investigated strong semi-openness and strong semi-
continuity in interval-valued fuzzy topology. Moreover, Min [8] studied characterizations for
interval-valued fuzzy m-semicontinuous mappings, Min and Kim [9, 10] investigated interval-
valued fuzzy m*-continuity and m*-open mappings. Hur et al. [11] studied interval-valued
fuzzy relations in the sense of a lattice theory. Also, Choi et al. [12] introduced the concept of
interval-valued smooth topological spaces and investigated some of it’s properties.

On the other hand, Cheong and Hur [13], and Lee et al. [14] studied interval-valued fuzzy
ideals/(generalized)bi-ideals in a semigroup. In particular, Kim and Hur [15] investigated
interval-valued fuzzy quasi-ideals in a semigroup. Kang [16], Kang and Hur [17] applied the
notion of interval-valued fuzzy sets to algebra. Jang et al. [18] investigated interval-valued
fuzzy normal subgroups.

In this paper, we introduce the concept of interval-valued fuzzy congruences on a semigroup
S and we obtain some important results:
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(i) For any interval-valued fuzzy congruence R on a group G,
the interval-valued congruence class Re is an interval-valued
fuzzy normal subgroup of G (Proposition 3.11).

(ii) For any interval-valued fuzzy congruenceR on a groupoid
S, we show that a binary operation ∗ an S/R is well-defined
(Proposition 3.20) and also we obtain some results related to
additional conditions for S (Theorem 3.21, Corollaries 3.21-1,
3.21-2, and 3.21-3). Also we improve that for any two interval-
valued fuzzy congruences R and Q on a semigroup S such
that R ⊂ Q, there exists a unique semigroup homomorphism
g : S/R→ S/G (Theorem 4.3).

2. Preliminaries

In this section, we list some concepts and well-known results
which are needed in later sections.

Let D(I) be the set of all closed subintervals of the unit
interval [0, 1]. The elements of D(I) are generally denoted
by capital letters M,N, · · ·, and note that M = [ML,MU ],
where ML and MU are the lower and the upper end points
respectively. Especially, we denoted , 0 = [0, 0], 1 = [1, 1], and
a = [a, a] for every a ∈ (0, 1), We also note that

(i) (∀M,N ∈ D(I)) (M = N ⇔ ML = NL,MU =

NU ),
(ii) (∀M,N ∈ D(I)) (M = N ≤ ML ≤ NL,MU ≤

NU ).
For every M ∈ D(I), the complement of M , denoted by MC ,
is defined by MC = 1−M = [1−MU , 1−ML]([7, 14]).

Definition 2.1 [4, 10, 14]. A mapping A : X → D(I) is
called an interval -valued fuzzy set(IVFS ) in X , denoted by
A = [AL, AU ], if AL, AL ∈ IX such that AL ≤ AU , i.e.,
AL(x) ≤ AU (x) for each x ∈ X , where AL(x)[resp AU (x)]
is called the lower [resp upper ] end point of x to A. For any
[a, b] ∈ D(I), the interval-valued fuzzy A in X defined by
A(x) = [AL(x), AU (x)] = [a, b] for each x ∈ X is denoted
by ˜[a, b] and if a = b, then the IVFS ˜[a, b] is denoted by sim-
ply ã. In particular, 0̃ and 1̃ denote the interval -valued fuzzy

empty set and the interval -valued fuzzy whole set in X , re-
spectively.

We will denote the set of all IVFSs in X as D(I)X . It is
clear that set A = [A,A] ∈ D(I)X for each A ∈ IX .

Definition 2.2 [14]. Let A,B ∈ D(I)X and let {Aα}α∈Γ ⊂

D(I)X . Then

(i) A ⊂ B iff AL ≤ BL and AU ≤ BU .

(ii) A = B iff A ⊂ B and B ⊂ A.

(iii) AC = [1−AU , 1−AL].

(iv) A ∪B = [AL ∨BL, AU ∨BU ].

(iv)′
⋃
α∈Γ

Aα = [
∨
α∈Γ

ALα,
∨
α∈Γ

AUα ].

(v) A ∩B = [AL ∧BL, AU ∧BU ].

(v)′
⋂
α∈Γ

Aα = [
∧
α∈Γ

ALα,
∧
α∈Γ

AUα ].

Result 2.A [14, Theorem 1]. Let A,B,C ∈ D(I)X and let
{Aα}α∈Γ ⊂ D(I)X . Then

(a) 0̃ ⊂ A ⊂ 1̃.

(b) A ∪B = B ∪A , A ∩B = B ∩A.

(c) A ∪ (B ∪ C) = (A ∪B) ∪ C ,

A ∩ (B ∩ C) = (A ∩B) ∩ C.

(d) A,B ⊂ A ∪B , A ∩B ⊂ A,B.

(e) A ∩ (
⋃
α∈Γ

Aα) =
⋃
α∈Γ

(A ∩Aα).

(f) A ∪ (
⋂
α∈Γ

Aα) =
⋂
α∈Γ

(A ∪Aα).

(g) (0̃)c = 1̃ , (1̃)c = 0̃.

(h) (Ac)c = A.

(i) (
⋃
α∈Γ

Aα)c =
⋂
α∈Γ

Acα , (
⋂
α∈Γ

Aα)c =
⋃
α∈Γ

Acα.

Definition 2.3 [8]. Let X be a set. Then a mapping R =

[RL, RU ] : X
∏
X → D(I) is called an interval-valued fuzzy

relation(IVFR) on X .

We will denote the set of all IVFRs on X as IVR(X).

Definition 2.4 [8]. Let R ∈ IVR(X). Then the inverse of R,
R−1 is defined by R−1(x, y) = R(y, x), for each x, y ∈ X .

Definition 2.5 [11]. Let X be a set and let R,Q ∈ IVR(X).
Then the composition of R and Q, Q ◦R, is defined as follows
: For any x, y ∈ X ,

(Q ◦R)L(x, y) =
∨
z∈X

[RL(x, z) ∧QL(z, y)]

and

(Q ◦R)U (x, y) =
∨
z∈X

[RU (x, z) ∧QU (z, y)].
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Result 2.B [11, Proposition 3.4]. Let X be a set and let
R,R1, R2, R3, Q1, Q2 ∈ IVR(X). Then

(a) (R1 ◦R2) ◦R3 = R1 ◦ (R2 ◦R3).
(b) If R1 ⊂ R2 and Q1 ⊂ Q2, then R1 ◦Q1 ⊂ R2 ◦Q2.

In particular, if Q1 ⊂ Q2, then R1 ◦Q1 ⊂ R1 ◦Q2.
(c) R1(R2 ∪R3) = (R1 ◦R2) ∪ (R1 ◦R3),

R1(R2 ∩R3) = (R1 ◦R2) ∩ (R1 ◦R3).
(d) If R1 ⊂ R2, then R−1

1 ⊂ R−1
2 .

(e) (R−1)−1 = R, (R1 ◦R2)−1 = R−1
2 ◦R

−1
1 .

(f ) (R1∪R2)−1 = R−1
1 ∪R

−1
2 , (R1∩R2)−1 = R−1

1 ∩R
−1
2 .

Definition 2.6 [11]. An IVFR R on a set X is called an
interval-valued fuzzy equivalence relation(IV FER) on X if it
satisfies the following conditions :

(1) it is interval-valued fuzzy reflexiv, i.e., R(x, x) = [1, 1],
for each x ∈ X ,

(2) it is interval-valued fuzzy symmetric, i.e., R−1 = R,
(3) it is interval-valued fuzzy transitive, i.e., R ◦R ⊂ R.
We will denote the set of all IVFERS on X as IVE(X).

From Definition 2.6, we can easily see that the following
hold.
Remark 2.7 (a) If R is an fuzzy equivalence relation on a set
X , then [R,R] ∈ IVE(X).

(b) If R ∈ IVE(X), then RL and RU are fuzzy equivalence
relation on X .

(c) Let R be an ordinary relation on a set X . Then R is an
equivalence relation on X if and only if [χR, χR] ∈ IVE(X).

Result 2.C [11, Proposition 3.9]. Let X be a set and let
Q,R ∈ IVE(X). If Q ◦R = R ◦Q, then R ◦Q ∈ IVE(X).

Let R be an IVFER on a set X and let a ∈ X . We define a
mapping Ra : X → D(I) as follows : For each a ∈ X ,

Ra(x) = R(a, x).

Then clearly Ra ∈ D(I)X . In this case, Ra is called the
interval-valued fuzzy equivalence class of R containing a ∈ X .
The set {Ra : a ∈ X} is called the interval-valued fuzzy quo-
tient set of X by R and denoted by X/R.

Result 2.D [11, Proposition 3.10]. Let R be an IVFER on a
set X . Then the following hold :

(a) Ra = Rb if and only if R(a, b) = [1, 1], for any a, b ∈
X .

(b) R(a, b) = [0, 0] if and only if Ra ∩ Rb = 0̃, for any
a, b ∈ X .

(c)
⋃

a∈X Ra = 1̃.

(d) There exits the surjection π : X → X/R defined by
π(x) = Rx for each x ∈ X .

Definition 2.8 [11]. Let X be a set, let R ∈ IVR(X) and
let {Rα}α∈Γ be the family of all IVFERs on X containing
R. Then

⋂
α∈ΓRα is called the IVFER generated by R and

denoted by Re.

It is easily seen that Re is the smallest IVFER containing
R.

Definition 2.9 [11]. LetX be a set and letR ∈ IVR(X). Then
the interval-valued fuzzy transitive closure of R, denoted R∞,
is defined as followings :

R∞ =
⋃
n∈N

Rn

,where Rn = R ◦R ◦ · · · ◦R(n factors).

Definition 2.10 [11]. We define two mappings 4,5 : X →
D(I) as follows : For any x, y ∈ X ,

4(x, y) =

[1, 1] if x = y,

[0, 0] if fx 6= y.

and
5(x, y) = [1, 1].

It is clear that4,5 ∈ IVE(X) and R is an interval-valued
fuzzy reflexive relation on X if and only if4 ⊂ R.

Result 2.E [11, Proposition 4.7]. If R is an IVFR on a set
X , then

Re = [R ∪R−1 ∪4]∞.

Definition 2.11 [17]. Let (X, ·) be a groupoid and let A,B ∈
D(I)X . Then the interval-valued fuzzy product of A and B,
A ◦B is defined as follows : For each a ∈ X ,

(A ◦B)L(x) =


∨
yz=x [AL(y) ∧BL(z)] ifx = yz,

0 ifx is not expressible asx = yz,
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and

(A ◦B)U (x) =


∨
yz=x [AU (y) ∧BU (z)] ifx = yz,

0 ifx is not expressible asx = yz.

Definition 2.12 [17]. Let (X, ·) be a groupoid and let A ∈
D(I)X . Then A is called an iinterval-valued fuzzy subgroupoid
(IVGP) of X if for any x, y ∈ X ,

AL ≥ AL(x) ∧AL(y)

and
AU ≥ AU (x) ∧AU (y).

We will denote the set of all IVGPs ofX as IVGP(X). Then
it is clear that 0̃, 1̃ ∈ IVGP(X).

Definition 2.13 [17]. Let G be a group and let A ∈ IVGP(G).
Then A is an iinterval-valued fuzzy subgroup (IVG) of G if for
each x ∈ G,

A(x−1) ≥ A(x),

i.e.,

AL(x−1) ≥ AL(x) and AU (x−1) ≥ AU (x).

We will denote the set of all IVGs of G as IVG(G).

Definition 2.14 [17]. Let G be a group and let A ∈ IVG(G).
Then A is said to be normal if A(xy) = A(yx), for any x, y ∈
G.

We will denote the set of all interval-valued fuzzy normal
subgroups of G as IVNG(G). In particular, we will denote the
set {N ∈ IVNG(G) : N(e) = [1, 1]} as IVN(G).

Result 2.F [17, Proposition 5.2]. Let G be a group and let
A ∈ D(I)G. If B ∈ IVNG(G), then A ◦B = B ◦A.

Definition 2.15 [18]. Let G be a group, let A ∈ IVG(G) and
let x ∈ G. We define two mappings

Ax : G→ D(I)

and
xA : G→ D(I)

as follows, respectively : For each g ∈ G,

Ax(g) = A(gx−1) and xA(g) = A(x−1g).

ThenAx[resp. xA] is called the interval-valued fuzzy right[resp. left]
coset of G determined by x and A.

It is obvious that if A ∈ IVNG(G), then the interval-valued
fuzzy left coset coincides with the interval-valued fuzzy right
coset of A on G. In this case, we will call interval-valued
fuzzy coset instead of interval-valued fuzzy left coset or interval-
valued fuzzy right coset.

3. Interval-Valued Fuzzy Congruences

Definition 3.1 [19]. A relation R on a groupoid S is said to be:

(1) left compatible if (a, b) ∈ R implies (xa, xb) ∈ R, for
any a, b ∈ S,

(2) right compatible if (a, b) ∈ R implies (ax, bx) ∈ R, for
any a, b ∈ S,

(3) compatible if (a, b) ∈ R and (s, d) ∈ R imply (ab, cd) ∈
R, for any a, b, c, d ∈ S,

(4) a left[resp. right] congruence on S if it is a left[resp. right]
compatible equivalence relation.

(5) a congruence on S if it is both a left and a right congru-
ence on S.

It is well-known [19, Proposition I.5.1] that a relation R on a
groupoid S is congruence if and only if it is both a left and a
right congruence on S. We will denote the set of all ordinary
congruences on S as C(S).

Now we will introduce the concept of interval-valued fuzzy
compatible relation on a groupoid.

Definition 3.2 An IVFR R on a groupoid S is said to be :

(1) interval-valued fuzzy left compatible if for any x, y, z ∈
G,

RL(x, y) ≤ RL(zx, zy) and RU (x, y) ≤ RU (zx, zy),

(2) interval-valued fuzzy right compatible if for any x, y, z ∈
G,

RL(x, y) ≤ RL(xz, yz) and RU (x, y) ≤ RU (xz, yz),

(3) interval-valued fuzzy compatible if for any x, y, z, t ∈ G,

RL(x, y) ∧RL(z, t) ≤ RL(xz, yz)
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and
RU (x, y ∧RU (z, t) ≤ RU (xz, yz).

Example 3.3 Let S = e, a, b be the groupoid with multiplica-
tion table :

e a b

e e a b

a a b a

b b b a

(a) Let R1 : S × S → D(I) be the mapping defined as the
matrix :

R1 e a b

e [λ11, µ11] [λ12, µ12] [λ13, µ13]

a [λ21, µ21] [λ22, µ22] [λ23, µ23]

b [λ31, µ31] [λ32, µ32] [λ33, µ33]

where [λij , µij ] ∈ D(I) such that [λ1i, µ1i](i = 1, 2, 3),

[λ21, µ21] and [λ31, µ31] are arbitrary, and

[λ23, µ23] = [λ32, µ32], [λ22, µ22] = [λ33, µ33],

[λ11, µ11] ≤ [λ22, µ22],

[λ12, µ12] ≤ [λ23, µ23] ∧ [λ22, µ22],

[λ13, µ13] ≤ [λ23, µ23] ∧ [λ22, µ22],

[λ21, µ21] ≤ [λ23, µ23] ∧ [λ22, µ22],

[λ31, µ31] ≤ [λ23, µ23] ∧ [λ22, µ22].

Then we can see that R1 is an interval-valued fuzzy left
compatible relation on S.

(b) Let R2 : S × S → D(I) be the mapping defined as the
matrix :

R2 e a b

e [λ11, µ11] [λ12, µ12] [λ13, µ13]

a [λ21, µ21] [λ22, µ22] [λ23, µ23]

b [λ31, µ31] [λ32, µ32] [λ33, µ33]

where [λij , µij ] ∈ D(I) such that [λij , µij ](i, j = 1, 2, 3) is
arbitrary and

[λ11, µ11] ≤ [λ21, µ21], [λ12, µ12] ≤ [λ31, µ31],

[λ13, µ13] ≤ [λ31, µ31], [λ21, µ21] ≤ [λ31, µ31],

[λ32, µ32] ≤ [λ22, µ22],

[λ33, µ33] ≤ [λ23, µ23] = [λ22, µ22].

Then we can see that R2 is an interval-valued fuzzy right com-
patible relation on S.

(c) Let R3 : S × S → D(I) be the mapping defined as the
matrix :

R3 e a b

e [λ11, µ11] [λ12, µ12] [λ13, µ13]

a [λ21, µ21] [λ22, µ22] [λ23, µ23]

b [λ31, µ31] [λ32, µ32] [λ33, µ33]

where [λij , µij ] ∈ D(I) such that

λ11 ∧ λ12 ≤ λ12, µ11 ∧ µ12 ≤ µ12, λ11 ∧ λ13 ≤ λ13,

µ11 ∧ µ13 ≤ µ13, λ12 ∧ λ13 ≤ λ12, µ12 ∧ µ13 ≤ µ12,

λ21 ∧ λ22 ≤ λ32, µ21 ∧ µ22 ≤ µ32, λ21 ∧ λ23 ≤ λ33,

µ21 ∧ µ23 ≤ µ33, λ22 ∧ λ23 ≤ λ32, µ22 ∧ µ23 ≤ µ32,

λ31 ∧ λ32 ≤ λ22, µ31 ∧ µ32 ≤ µ22, λ31 ∧ λ33 ≤ λ23,

µ31 ∧ µ33 ≤ µ23, λ32 ∧ λ33 ≤ λ22, µ32 ∧ µ33 ≤ µ22.

Then we can see that R3 is an interval-valued fuzzy compatible
relation on S.

Lemma 3.4 Let R be a relation on a groupoid S. Then R is
left compatible if and only if [χR, χR] is interval-valued fuzzy
left compatible.
Proof. (⇒) : Suppose R is left compatible. Let a, b, x ∈ S.

Case(1) Suppose (a, b) ∈ R. Then χR(a, b) = 1. Since
R is left compatible, (xa, xb) ∈ R, for each x ∈ S. Thus
χR(xa, xb) = 1 = χR(a, b).

Case(2) Suppose ¬(a, b) ∈ R. Then, for each x ∈ S, it
holds that χR(a, b) = 0 ≤ χR(xa, xb). Thus, in either cases,
[χR, χR].

(⇐) : Suppose [χR, χR] is interval-valued fuzzy compat-
ible. Let a, b, x ∈ S and (a, b) ∈ R. Then, by hypothesis,
χR(xa, xb) ≥ χR(a, b) = 1. Thus χR(xa, xb) = 1. So
(xa, xb) ∈ R. Hence R is left compatible.

Lemma 3.5 [The dual of Lemma 3.4]. LetR be a relation on a
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groupoid S. Then R is right compatible if and only if [χR, χR]

is interval-valued fuzzy right compatible.

Definition 3.6 An IVFER R on a groupoid S is called an :

(1) interval-valued fuzzy left congruence (IVLC) if it is interval-
valued fuzzy left compatible,

(2) interval-valued fuzzy right congruence (IVRC) if it is
interval-valued fuzzy right compatible,

(3) interval-valued fuzzy congruence (IVC) if it is interval-
valued fuzzy compatible.

We will denote the set of all IVCs[resp. IVLCs and IVRCs]
on S as IVC(S) [resp. IVLC(S) and IVRC(S)].

Example 3.7 Let S = e, a, b be the groupoid defined in Exam-
ple 3.3. Let R1 : S × S → D(I) be the mapping defined as the
matrix :

R1 e a b

e [1, 1] [0.4, 0.6] [o.4, 0.6]

a [0.4, 0.6] [1, 1] [0.2, 0.7]

b [0.4, 0.6] [0.2, 0.7] [1, 1]

Then it can easily be checked that R ∈ IVE(S). Moreover we
can see that R ∈ IVC(S).

Proposition 3.8 Let S be a groupoid and let R ∈ IVE(S).
Then R ∈ IVC(S) if and only if it is both an IVLC and an
IVRC.

Proof. (⇒) : Suppose R ∈ IVC(S) and let x, y, z ∈ S. Then

RL(x, y) = RL(x, y) ∧RL(z, z) ≤ RL(xz, yz)

and

RU (x, y) = RU (x, y) ∧RU (z, z) ≤ RU (xz, yz).

Also,

RL(x, y) = RL(z, z) ∧RL(x, y) ≤ RL(zx, zy)

and

RU (x, y) = RU (z, z) ∧RU (x, y) ≤ RU (zx, zy).

Thus R is both an IVLC and an IVRC.

(⇐) : Suppose R is both an IVLC and an IVRC. and let
x, y, z, t ∈ S. Then

RL(x, y) ∧RL(z, t) = RL(x, y) ∧RL(z, z)

∧RL(y, y) ∧RL(z, t)

≤ RL(xz, yz) ∧RL(yz, yt)

≤ RL(xz, yt) [Since R ◦R ⊂ R].

By the similar arguments, we have that

RU (x, y) ∧RU (z, t) ≤ RU (xz, yt).

So R is interval-valued fuzzy compatible. Hence R ∈ IVC(S).

The following is the immediate result of Remark 2.7(c), Lem-
mas 3.4 and 3.5, and Proposition 3.5.

Theorem 3.9 Let R be a relation on a groupoid S. Then
R ∈ C(S) if and only if [χR, χR] ∈ IVC(S).

For any interval-valued fuzzy left[resp. right] compatible re-
lation R, it is obvious that if G is a group, then R(x, y) =

R(tx, ty)[resp. R(x, y) = R(xt, yt)], for any x, y, t ∈ G.
Thus we have following result.

Lemma 3.10 Let R be an IVC on a group G. Then

R(xay, xby) = R(xa, xb) = R(ay, by) = R(a, b),

for any a, b, x, y ∈ G.

Example 3.11 Let V be the Klein 4-group with multiplication
table :

e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Let R : V × V → D(I) be the mapping defined as the matrix :

R e a b c

e [1, 1] [0.3, 0.6] [0.1, 0.9] [0.3, 0.6]

a [0.5, 0.6] [1, 1] [0.3, 0.6] [0.1, 0.9]

b [0.1, 0.9] [0.3, 0.6] [1, 1] [0.3, 0.6]

c [0.3, 0.6] [0.1, 0.9] [0.3, 0.6] [1, 1]

Then we can see that R ∈ IVC(V ). Furthermore, it is easily
checked that Lemma 3.10 holds : For any s, t, x, y ∈ V ,

R(xsy, xty) = R(xs, xt) = R(sy, ty) = R(s, t).

The following is the immediate result of Proposition 3.8 and
Lemma 3.10.
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Theorem 3.12 Let R be an IVFR on a group G. Then R ∈
IVC(G) if and only if it is interval-valued fuzzy left(right) com-
patible equivalence relation.

Lemma 3.13 Let P andQ be interval-valued fuzzy compatible
relations on a groupoid S. ThenQ◦P is also an interval-valued
fuzzy compatible relation on S.

Proof. Let a, b, x ∈ S. Then

(Q ◦ P )L(ax, bx) =
∨
t∈S

[PL(ax, t) ∧QL(t, xb)]

≥ PL(xa, xc) ∧QL(xc, xb) for each c ∈ S

≥ PL(a, c) ∧QL(c, b) for each c ∈ S.

[Since P and Q are compatible]

By the similar arguments, we have that

(Q ◦ P )U (ax, bx) ≥ PU (a, c) ∧QU (c, b) for each c ∈ S.

Thus

(Q ◦ P )L(ax, bx) ≥
∨
c∈S

[PL(a, c) ∧QL(c, b)]

= (Q ◦ P )(a, b)

and

(Q ◦ P )U (ax, bx) ≥
∨
c∈S

[PU (a, c) ∧QU (c, b)]

= (Q ◦ P )(a, b).

So Q ◦ P is interval-valued fuzzy right compatible. Similarly,
we can see that Q ◦ P is interval-valued fuzzy left compatible.
Hence Q ◦ P is interval-valued fuzzy compatible.

Theorem 3.14 Let P and Q be IVC on a groupoid S. Then the
following are equivalent :

(a) Q ◦ P ∈ IVC(S).

(b) Q ◦ P ∈ IVE(S).

(c) Q ◦ P is interval-valued fuzzy symmetric.

(d) Q ◦ P = P ◦Q.

Proof. It is obvious that (a)⇒ (b)⇒ (c).

(c)⇒ (d) : Suppose the condition (c) holds and let a, b ∈ S.
Then

(Q ◦ P )L(a, b) =
∨
t∈S

[PL(a, t) ∧QL(t, b)]

=
∨
t∈S

[QL(b, t) ∧ PL(t, a)]

[Since P and Q areinterval-valued fuzzy symmetric]

= (P ◦Q)L(a, b).

Similarly, we have that

(Q ◦ P )U (a, b) = (P ◦Q)U (a, b).

Hence Q ◦ P = P ◦Q.
(d)⇒ (a) : Suppose the condition (d) holds. Then , by Re-

sult 2.C, Q ◦ P ∈ IVE(S). Since P and Q are interval-valued
fuzzy compatible, by Lemma 3.13, Q ◦ P is interval-valued
fuzzy compatible. So Q ◦ P ∈ IVC(S). This completes the
proof.

Proposition 3.15 Let S be a groupoid and let Q,P ∈ IVC(S).
If Q ◦ P = P ◦Q, then P ◦Q ∈ IVC(S).
Proof. By Result 2.C, it is clear that P ◦ Q ∈ IVE(S). Let
x, y, t ∈ S. Then, since P andQ are interval-valued fuzzy right
compatible,

(P ◦Q)L(x, y) =
∨
z∈S

[QL(x, z) ∧ PL(z, y)]

≤
∨
z∈S

[QL(xt, zt) ∧ PL(zt, yt)]

≤
∨
a∈S

[QL(xt, a) ∧ PL(a, yt)]

= (P ◦Q)L(xt, yt).

Similarly, we have that

(P ◦Q)U (x, y) ≤ (P ◦Q)U (xt, yt).

By the similar arguments, we have that
(P ◦Q)L(x, y) ≤ (P ◦Q)L(tx, ty)

and
(P ◦Q)U (x, y) ≤ (P ◦Q)U (tx, ty).

So P ◦Q is interval-valued fuzzy left and right compatible.
Hence P ◦Q ∈ IVC(S).

Let R be an IVC on a groupoid S and let a ∈ S. Then
Ra ∈ D(I)S is called an interval-valued fuzzy congruence
class of R containing a ∈ S and we will denote the set of all
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interval-valued fuzzy congruence classes of R as S/R.

Proposition 3.16 If R is an IVC on a groupoid S, then Ra ◦
Rb ⊂ Rab, for any a, b ∈ S.

Proof. Let x ∈ S. If x is not expressible as x = yz, then clearly
(Ra ◦ Rb)(x) = [0, 0]. Thus Ra ◦ Rb ⊂ Rab. Suppose x is
expressible as x = yz. Then

(Ra ◦Rb)L(x) =
∨
yz=x

[(Ra)L(y) ∧ (Rb)L(z)]

=
∨
yz=x

[RL(a, y) ∧RbL(b, z)]

≤
∨
yz=x

[RL(ab, yz)]

[Since R isinterval-valued fuzzy compatible]

= RL(ab, x) = (Rab)L(x).

Similarly, we have that

(Ra ◦Rb)U (x) ≤ (Rab)U (x).

Thus Ra ◦Rb ⊂ Rab. This completes the proof.

Proposition 3.17 Let G be a group with the identity e and let
R ∈ IVC(G). We define the mapping AR : G → D(I) as
follows : For each a ∈ G,

AR(a) = R(a, e) = Re(a).

Then AR = Re ∈ IVNG(G).

Proof. From the definition of AR, it is obvious that AR ∈
D(I)G. Let a, b ∈ G. Then

ALR(ab) = RL(ab, e) = R(a, b−1)[By Lemma 3.10]

≥ (R ◦R)L(a, b−1[Since R is transitive]

=
∨
t∈G

[RL(a, t) ∧RL(t, b−1)]

≥ RL(a, e) ∧RL(e, b−1

= RL(a, e) ∧RL(b, e)[By Lemma 3.10]

= ALR(a) ∧ALR(b).

Similarly, we have that

AUR(ab) ≥ AUR(a) ∧AUR(b).

On the other hand,

AR(a−1) = [ALR(a−1), AUR(a−1)]

= [RL(a−1, e), RU (a−1, e)]

= [RL(e, a), RU (e, a)][By Lemma 3.10]

= [RL(a, e), RU (a, e)][Since R is transitive]

= [ALR(a), AUR(a)] = AR(a).

Moreover,

AR(e) = [ALR(e), AUR(e)] = [RL(e, e), RU (e, e)] = [1, 1].

So AR ∈ IVG(G) such that AR(e) = [1, 1].
Finally,

AR(ab) = [ALR(ab), AUR(ab)]

= [RL(ab, e), RU (ab, e)]

= [RL(b(ab)b−1, beb−1), RU (b(ab)b−1, beb−1)]

[By Lemma 3.10]

= [RL(ba, e), RU (ba, e)]

= [ALR(ba), AUR(ba)]

= AR(ba).

Hence AR ∈ IVNG(G). This completes the proof.

The following is the immediate result of Proposition 3.17
and Result 2.F. Proposition 3.18 Let G be a group with the
identity e. If P,Q ∈ IVNG(G), then Pe ◦Qe = Qe ◦ Pe.

Proposition 3.19 Let G be a group with the identity e. If R ∈
IVC(G), then any interval-valued fuzzy congruence classRx of
x ∈ G byR is an interval-valued fuzzy coset ofRe. Conversely,
each interval-valued fuzzy coset of Re is an interval-valued
fuzzy congruence class by R.

Proof. Suppose R ∈ IVC(G) and let x.g ∈ G. Then Rx(g) =

R(x, g). Since R is interval-valued fuzzy left compatible, by
Lemma 3.10, R(x, g) = R(e, x−1g). Thus

Rx(g) = R(e, x−1g) = Re(−1g) = (xRe)(g).

So Rx = xRe. Hence Rx is an interval-valued fuzzy coset of
Re.

Conversely, let A be any interval-valued fuzzy coset of Re.
Then there exists an x ∈ G such that A = xRe. Let g ∈ G.
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Then

A(g) = (xRe)(g) = Re(x−1g) = R(e, x−1g).

Since R is interval-valued fuzzy left compatible,

R(e, x−1g) = R(x, g) = Rx(g).

So A = Rx. Hence A is an interval-valued fuzzy congruence
class of x by R.

Proposition 3.20 Let R be an IVC on a groupoid S. We define
the binary operation ∗ on S/R as follows : For any a, b ∈ S,

Ra ∗Rb = Rab.

Then ∗ is well-defined.

Proof. Suppose Ra = Rx and Rb = Ry, where a, b, x, y ∈ S.
Then, by Result 2.D(a),

R(a, x) = R(b, y) = [1, 1].

Thus

RL(ab, xy) ≥
∨
z∈S

[RL(ab, z) ∧RL(z, xy)]

[Since R is transitive]

≥ RL(ab, xb) ∧RL(xb, xy)

≥ RL(a, x) ∧RL(b, y)

[Since R is righy and left compatible]

= 1.

Similarly, we have that

RU (ab, xy) ≥ 1.

Thus R(ab, xy) = [1, 1]. By Result 2.D(a), Rab = Rxy. So
Ra ∗Rb = Rx ∗Ry. Hence ∗ is well-defined.

From Proposition 3.20 and the definition of semigroup, we
obtain the following result.

Theorem 3.21 Let R be an IVC on a semigroup S. Then
(S/R, ∗) is a semigroup.

A semigroup S is called an inverse semigroup [7] if each
a ∈ S has a unique inverse, i.e., there exists a unique a−1 ∈ S

such that aa−1a = a and a−1 = a−1aa−1.

Corollary 3.21-1 Let R be an IVC on an inverse semigroup
S. Then (S/R, ∗) is an inverse semigroup. Proof. By Theorem
3.21, (S/R, ∗) is a semigroup. Let a ∈ S. Since S is an
inverse semigroup, there exists a unique a−1 ∈ S such that
aa−1a = a and a−1 = a−1aa−1. Moreover, it is clear that
(Ra)−1 = Ra−1. Then (Ra)−1 ∗ Ra ∗ (Ra)−1 = Ra−1 ∗
Ra ∗Ra−1 = Ra−1aa−1 = Ra−1 and Ra ∗ (Ra)−1 ∗Ra =

Ra ∗Ra−1 ∗Ra = Raa−1a = Ra.

So Ra−1 is an inverse of Ra for each a ∈ S.

An element a of a semigroup S is said to be regular if
a ∈ aSa, i.e., there exists an x ∈ S such that a = axa. The
semigroup S is said to be regular if for each a ∈ S, a is a
regular element. Corresponding to a regular element a, there
exists at least one á ∈ S such that a = aáa and á = áaá. Such
an á is called an inverse of a.

Corollary 3.21-2 Let R be an IVC on a regular semigroup S.
Then (S/R, ∗) is a regular semigroup.

Proof. By Theorem 3.21, (S/R, ∗) is a semigroup. Let a ∈ S.
Since S is a regular semigroup, there exists an x ∈ S such
that a = axa. It is obvious that Rx ∈ S/R. Moreover,
Ra ∗Rx ∗Ra = Raxa = Ra. So Ra is an regular element of
S/R. Hence S/R is a regular semigroup.

Corollary 3.21-3 Let R be an IVC on a group G. Then
(G/R, ∗) is a group.

Proof. By Theorem 3.21, (G/R, ∗) is a semigroup. Let x ∈ G.
Then

Rx ∗Re = Rxe = Rx = Rex = Re ∗Rx.

Thus Re is the identity in G/R with respect to ∗. Moreover,

Rx ∗Rx−1 = Rxx−1 = Re = Rx−1x = Rx−1 ∗Rx.

So Rx−1 is the inverse of Rx with respect to ∗. Hence G/R is
a group.

Proposition 3.22 Let G be a group and let R ∈ IVC(G). We
define the mapping π : G/R → D(I) as follows : For each
x ∈ G,

π(Rx) = [(Rx)L(e), Rx)U (e)].

Then π ∈ IVG(G/R).
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Proof. From the definition of π, it is clear that π = [πL, πU ] ∈
D(I)G/R. Let x, y ∈ G. Then

πL(Rx ∗Ry) = πL(Rxy) = (Rxy)L(e) = RL(xy, e).

≥ RL(x, e) ∧RL(y, e)

[Since R is compatible]

= (Rx)L(e) ∧ (Ry)L(e)

= πL(Rx) ∧ πL(Ry).

Similarly, we have that

πU (Rx ∗Ry) ≥ πU (Rx) ∧ πU (Ry).

By the process of the proof of Corollary 3.21-1, (Rx)−1 =

Rx−1. Thus

π((Rx)−1) = π(Rx−1) = R(x−1, e) = R(e, x) = π(Rx).

So π((Rx)−1) = π(Rx) for each x ∈ G. Hence π ∈ IVG(G/R).

Proposition 3.23 If R is an IVC on an inverse semigroup
S. Then R(x−1, y−1) = R(x, y) for any x, y ∈ S. Proof. By
Corollary 3.21-1, S/R is an inverse semigroup with (Rx)−1 =

Rx−1 for each x ∈ S. Let x, y ∈ S. Then

R(x−1, y−1) = Rx1(y−1) = [Rx(y−1]−1

= [Ry−1(x)]−1 = [(Ry(x))−1]−1

= Ry(x) = R(y, x) = R(x, y).

Hence R(x−1, y−1) = R(x, y).

The following is the immediate result of Proposition 3.22
Corollary 3.23 Let R be an IVC on a group G. Then

R(x−1, y−1) = R(x, y)

for any x, y ∈ G.

Proposition 3.24 Let R be an IVC on a semigroup S. Then

R−1([1, 1]) = {(a, b) ∈ S × S : R(a, b) = [1, 1]}

is a congruence on S. Proof. It is clear that R−1([1, 1]) is
reflexive and symmetric. Let (a, b), (b, c) ∈ R−1([1, 1]). Then

R(a, b) = R(b, c) = [1, 1]. Thus

RL(a, c) ≥
∨
x∈S

[RL(a, x) ∧RL(x, c)]

[Since R is transitive]

≥ RL(a, b) ∧RL(b, c) = 1.

Similarly, we have that RU (a, c) ≥ 1. So R(a, c) = [1, 1],
i.e., (a, c) ∈ R−1([1, 1]). Hence R−1([1, 1]) is an equivalence
relation on S.

Now let (a, b) ∈ R−1([1, 1]) and let x ∈ S. Since R is an
IVC on S,

RL(ax, bx) ≥ RL(a, b) = 1 andRU (ax, bx) ≥ RU (a, b) = 1.

Then R(ax, bx) = [1, 1]. Thus (ax, bx) ∈ R−1([1, 1]). Sim-
ilarly, (xa, xb) ∈ R−1([1, 1]). So R−1([1, 1]) is compatible.
Hence R−1([1, 1]) is a congruence on S.

Let S be a semigroup. Then S1 denotes the monoid defined
as follows :

S1 =

S if Shastheidentity1,

S ∪ {1} otherwise.

Definition 3.25 Let S be a semigroup and let R ∈ IVR(S).
Then we define a mapping R∗ : S × S → D(I) as follows :
For any c, d ∈ S,

(R∗)L(c, d) =
∨

xay=c, xby=d, x,y∈S1

RL(a, b)

and

(R∗)U (c, d) =
∨

xay=c, xby=d, x,y∈S1

RU (a, b).

It is obvious that R∗ ∈ IVR(S).

Proposition 3.26 Let S be a semigroup and let R,P,Q ∈
IVR(S). Then :

(a) R ⊂ R∗.
(b) (R∗)−1 = (R−1)∗.

(c) If P ⊂ Q, then P ∗ ⊂ Q∗.
(d) (R∗)∗ = R∗.

(e) (P ∪Q)∗ = P ∗ ∪Q∗.
(f ) R = R∗ if and only if R is left and right compatible.

Proof. From Definition 3.25, the proofs of (a), (b) and (c) are
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clear.

(d) By (a) and (c), it is clear that R∗ ⊂ (R∗)∗. Let c, d ∈ S.
Then

((R∗)∗)L(c, d) =
∨

xay=c, xby=d, x,y∈S1

(R∗)L(a, b)

=
∨

xay=c, xby=d, x,y∈S1

∨
zpt=a, zqt=b, z,t∈S1

RLp, q)

≤
∨

xzpty=c, xzqty=d, xz,ty∈S1

RL(p, q) = (R∗)L(c, d).

By the similar arguments, we have that

((R∗)∗)U (c, d) ≤ (R∗)U (c, d).

Thus (R∗)∗ ⊂ R∗. So (R∗)∗ = R∗.

(e) By (c), P ∗ ⊂ (P ∪ Q)∗ and Q∗ ⊂ (P ∪ Q)∗. Thus
P ∗ ∪Q∗ ⊂ (P ∪Q)∗. Let c, d ∈ S. Then

((P ∪Q)∗)L(c, d)

=
∨

xay=c, xby=d, x,y∈S1

(P ∪Q)L(a, b)

=
∨

xay=c, xby=d, x,y∈S1

[PL(a, b) ∧QL(a, b)]

≤ (
∨

xay=c, xby=d, x,y∈S1

PL(a, b))

∧ (
∨

xay=c, xby=d, x,y∈S1

QL(a, b))

= (P ∗)L(a, b) ∧ (Q∗)L(c, d).

Similarly, we have that

((P ∪Q)∗)U (c, d) ≤ (P ∗)U (a, b) ∧ (Q∗)U (c, d).

Thus (P ∪Q)∗ ⊂ P ∗ ∪Q∗. So (P ∪Q)∗ = P ∗ ∪Q∗.

(f ) (⇒) : Suppose R = R∗ and let c, d, e ∈ S. Then

RL(ec, ed) = (R∗)L(ec, ed)

=
∨

xay=ec, xby=ed, x,y∈S1

RL(a, b)

≥ RL(c, d).

Similarly, we have that

RU (ec, ed) ≥ RU (c, d).

By the similar arguments, we have that

RL(ce, de) ≥ RL(c, d) and RU (ce, de) ≥ RU (c, d).

(⇐) : Suppose R is interval-valued fuzzy left and right com-
patible. Let c, d ∈ S. Then

(R∗)L(c, d) =
∨

xay=c, xby=d, x,y∈S1

RL(a, b)

≤
∨

xay=c, xby=d, x,y∈S1

RL(xay, xby)

= RL(c, d).

Similarly, we have that

(R∗)U (c, d) ≤ RU (c, d).

Thus R∗ ⊂ R. So R∗ = R. This completes the proof.

Proposition 3.27 If R is an IVFR on a semigroup S such that
is interval-valued fuzzy left and right compatible, then so is
R∞. Proof. Let a, b, c ∈ S and let n ≥ 1. Then

(Rn)L(a, b) =
∨

z1, ··· , zn∈S
[RL(a, z1) ∧RL(z1, z2)

∧ · · · ∧RL(zn−1, b)]

≤
∨

z1, ··· , zn∈S
[RL(ac, z1c) ∧RL(z1c, z2c)

∧ · · · ∧RL(zn−1c, bc)]

= (Rn)L(ac, bc).

Similarly, we have that

(Rn)U (a, b) ≤ (Rn)U (ac, bc).

By the similar arguments, we have that
(Rn)L(a, b) ≤ (Rn)U (ca, cb)

and
(Rn)U (a, b) ≤ (Rn)U (ca, cb).

So Rn is interval-valued fuzzy left and right compatible for
each n ≥ 1. Hence R∞ is interval-valued fuzzy left and right
compatible.

Let R ∈ IVR(S) and let {Rα}α∈ Γ be the family of all
IVCs on a semigroup S containingR. Then the IVFR R̂ defined
by R̂ =

⋂
α∈ ΓRα is clearly the least IVC on S. In this case,

R̂ is called the IVC on S generated by R.
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Theorem 3.28 If R is an IVFR on a semigroup S, then
R̂ = (R∗)e. Proof. By Definition 2.8, (R∗)e ∈ IVE(S) such
that R∗ ⊂ (R∗)e. Then, by Proposition 3.26(a), R ⊂ (R∗)e.
Also, by (a) and (b) of Proposition 3.26 R∗ ∪ (R∗)−1 ∪4 =

(R ∪R−1 ∪4)∗. Thus, by Proposition 3.26(f ) and Result 2.E,
R∗ ∪ (R∗)−1 ∪ 4 is left and right compatible. So, by Propo-
sition 3.27, (R∗)e = [R∗ ∪ (R∗)−1 ∪ 4]∞ is left and right
compatible. Hence, by Proposition 3.8, (R∗)e ∈ IVC(S). Now
suppose Q ∈ IVC(S) such that R ⊂ Q. Then, by (c) and (d)
of Proposition 3.26, R∗ ⊂ Q∗ = Q. Thus (R∗)e ⊂ Q. So
R̂ = (R∗)e. This completes the proof.

4. Homomorphisms

Let f : S −→ T be a semigroup homomorphism. Then it is
well-known that the relation

Ker(f) = {(a, b) ∈ S × S : f(a) = f(b)}

is a congruence on S.
The following is the immediate result of Theorem 3.9.

Proposition 4.1 Let f : S −→ T be a semigroup homomor-
phism. Then R = [χKer(f), χKer(f)] ∈ IVC(S).

In this case, R is called the interval-valued fuzzy kernel of f
and denoted by IVK(f). In fact, for any a, b ∈ S,

IVK(f)(a, b) =

[1, 1] if f(a) = f(b),

[0, 0] if f(a) 6= f(b).

Theorem 4.2 (a) Let R be an interval-valued fuzzy congruence
on a semigroup S. Then the mapping π : S → S/R defined
same as in Result 2.D(d) is an epimorphism.

(b) If f : S → T is a semigroup homomorphism, then there
is a monomorphism g : S/IVK(f)→ T such that the diagram

 

 

S T

)(IVK/ fS

f

#)](IVK[ f g

commutes, where [IVK(f)]] denotes the natural mapping. Proof.
(a) Let a, b ∈ S. Then, by the definition of R] and Theorem
3.21,

π(ab) = Rab = Ra ∗Rb = π(a) ∗ π(b).

So π is a homomorphism. By Result 2.D(d), π is surjective.
Hence π is an epimorphism.

(b) We define g : S/IVK(f)→ T by g([IFK(f)]a) = f(a)

for each a ∈ S. Suppose [IVK(f)]a = [IVK(f)]b for any a, b ∈
S. Since IVK(f)(a, b) = [1, 1], i.e. χIVK(f)(a, b) = 1. Thus
(a, b) ∈ Ker(f). So (a, b) ∈ Ker(f). So g([IVK(f)]a) =

f(a) = f(b) = g([IVK(f)]b). Hence g is well-defined.
Suppose f(a) = f(b). Then IVK(f)(a, b) = [1, 1]. Thus,

by Result 2.D(a), [IVK(f)]a = [IVK(f)]b. So g is injective.
Now let a, b ∈ S, Then

g([IVK(f)]a ∗ [IVK(f)]b) = g([IVK(f)]ab)

= f(ab)

= f(a)f(b)

= g([IVK(f)]a)g([IVK(f)]b).

So g is a homomorphism. Let a ∈ S. Then g([IVK(f)]](a)) =

g([IVK(f)]a) = f(a). So g ◦ [IVK(f)]] = f . This completes
the proof.

Theorem 4.3 Let R and Q be IVCs on a semigroup such that
R ⊂ Q. Then there exists a unique semigroup S homomor-
phism g : S/R→ S/Q such that the diagram

 

 

S QS /

RS /

#Q

#R

commutes and (S/R)/IVK(g) is isomorphic to S/Q, where
R] and Q] denote the natural mappings, respectively. Proof.
Define g : S/R −→ S/Q by g(Ra) = Qa for each a ∈ S.
Suppose Ra = Rb. Then, by Result 2.D(a), R(a, b) = [1, 1].
Since R ⊂ Q,

1 = RL(a, b) ≤ QL(a, b) and 1 = RU (a, b) ≤ QU (a, b).

Then Q(a, b) = [1, 1]. Thus Qa = Qb, i.e., g(Ra) = g(Rb).
So g is well- defined.

Let a, b ∈S. Then

g(Ra ∗Rb) = g(Rab) = Qab = Qa ∗Qb = g(Ra) ∗ g(Rb).

So g is a semigroup homomorphism. The remainders of the
proofs are easy. This completes the proof.
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5. Conclusion

Hur et al. [11] studied interval-valued fuzzy relations in the
sense of a lattice. Cheong and Hur [13], Hur et al. [14],
and Kim et al. [15] investigated interval-valued fuzzy ide-
als/(generalized) bi-ideas and quasi-ideals in a semigroup, re-
spectively.

In this paper, we mainly study interval-valued fuzzy congru-
ences on a semigroup. In particular, we obtain the result that
R̂ = (R∗)e for the IVC R̂ on S generated by R for each IVFR
R on a semigroup S (See Theorem 3.28). Finally, for any IVCs
R and Q on a semigroup S such that R ⊂ Q, there exists a
unique semigroup homomorphism g : S/K → S/Q such that
(S?R)/IVK(g) is isomorphic to S/Q (See Theorem 4.3).

In the future, we will investigate interval-valued fuzzy con-
gruences on a semiring.
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