• Title/Summary/Keyword: nanorod arrays

Search Result 39, Processing Time 0.041 seconds

Vertically Aligned WO3-CuO Core-Shell Nanorod Arrays for Ultrasensitive NH3 Detection

  • Yan, Wenjun;Hu, Ming
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850122.1-1850122.6
    • /
    • 2018
  • Vertically aligned $WO_3$-CuO core-shell nanorod arrays for $NH_3$ sensing are prepared. The sensor is fabricated by preparing $WO_3$-CuO nanorod arrays directly on silicon wafer with interdigital Pt electrodes. The $WO_3$-CuO nanorod arrays are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sensor based on the vertically aligned $WO_3$-CuO nanorod arrays exhibits ultrasensitive $NH_3$ detection, indicating p-type behavior. The optimum sensing temperature is found to be about $150^{\circ}C$. Both response and recovery time to $NH_3$ ranging from 50 ppm to 500 ppm are around 10-15 s. A possible $NH_3$ sensing mechanism of the vertically aligned hybrid nanorod arrays is proposed.

Fabrication of Diameter-tunable Well-aligned ZnO Nanorod Arrays via a Sonochemical Route

  • Jung, Seung-Ho;Oh, Eu-Gene;Lee, Kun-Hong;Jeong, Soo-Hwan;Yang, Yo-Sep;Park, Chan-Gyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1457-1462
    • /
    • 2007
  • A simple and facile sonochemical route was described for the fabrication of diameter-controlled ZnO nanorod arrays on Si wafers. The diameter of ZnO nanorods was controlled by the concentration of zinc cations and hydroxyl anions in aqueous precursor solution. At high concentration of the precursor solution, thick ZnO nanorod arrays were formed. On the contrary, thin ZnO nanorod arrays were formed at low concentration of the precursor solution. The average diameter of ZnO nanorods varies from 40 to 200 nm. ZnO nanorod arrays with sharp tip were also fabricated by the step-by-step decrease in precursor solution concentration. The crystal structure and optical characteristics of ZnO nanorods were investigated by transmission electron microscopy, X-ray diffraction, and photoluminescence spectroscopy. Growth mechanism of ZnO nanorod arrays was also proposed.

Photoelectrochemical characterization of surface-modified CuInS2 nanorod arrays prepared via template-assisted growth and transfer

  • Yang, Wooseok;Kim, Jimin;Oh, Yunjung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.401-401
    • /
    • 2016
  • Although vertically aligned one-dimensional (1D) structure has been considered as efficient forms for photoelectrode, development of efficient 1D nanostructured photocathode are still required. In this sense, we recently demonstrated a simple fabrication route for CuInS2 (CIS) nanorod arrays from aqueous solution by template-assisted growth-and-transfer method and their feasibility as a photoelectrode for water splitting. In this study, we further evaluated the photoelectrochemical properties surface-modified CIS nanorod arrays. Surface modification with CdS and ZnS was performed by successive ion layer adsorption and reaction (SILAR) method, which is well known as suitable technique for conformal coating throughout nanoporous structure. With surface modification of CdS and ZnS, both photoelectrochemical performance and stability of CuInS2 nanorod arrays were improved by shifting of the flat-band potential, which was analyzed both onset potential and Mott-schottky plot.

  • PDF

Diameter Effect of Silver Nanorod Arrays to Surface-enhanced Raman Scattering

  • Gu, Geun Hoi;Kim, Min Young;Yoon, Hyeok Jin;Suh, Jung Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.725-730
    • /
    • 2014
  • The effect the diameter of silver nanorod arrays whose distance between the nanorods was uniform at 65 nm have on Surface-enhanced Raman Scattering (SERS) has been studied by varying the diameter from 28 to 51 nm. Nanorod length was fixed at approximately 62 nm, which is the optimum length for SERS by excitation with a 632.8 nm laser line. The transverse and longitudinal modes of the surface plasmon of these silver nanorods were near 400 and 630 nm, respectively. The extinction of the longitudinal mode increased with increasing nanorod diameter, while the transverse mode did not change significantly. High-quality SERS spectra of p-aminothiophenol and benzenethiol adsorbed on the tips of the silver nanorods were observed by excitation with a 632.8 nm laser line. The SERS enhancement increased with increasing nanorod diameter. We concluded that the SERS enhancement increases when the diameter of silver nanorods is increased mainly by increasing the excitation efficiency of the longitudinal mode. The enhancement factor for the silver nanorods with a 51 nm diameter was approximately $2{\times}10^7$.

Fabrication of H2 Gas Sensor Based on ZnO Nanarod Arrays by a Sonochemical Method

  • Lee, Mi-Sun;Oh, Eu-Gene;Jeong, Soo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3735-3737
    • /
    • 2011
  • We report a simple method for fabricating ZnO gas sensors via a sonochemical route and their $H_2$ gas sensing properties. Vertically aligned ZnO nanorod arrays as a sensing material were synthesized on a Pt-electrode patterned alumina substrate under ambient conditions. The advantage of the proposed method is a high speed of processing. The gas sensor based on ZnO nanorod arrays with large specific surface area showed a high response to $H_2$ and a detection limit of 70 ppm at $250^{\circ}C$. Also, their response and recovery time were relatively short and a complete regeneration was observed. A mechanism for sensing $H_2$ gas on the surface of ZnO nanorods is proposed.

Improved Light Output of GaN-Based Light-Emitting Diodes with ZnO Nanorod Arrays (ZnO 나노로드 배열에 의한 GaN기반 광다이오드의 광추출율 향상)

  • Lee, Sam-Dong;Kim, Kyoung-Kook;Park, Jae-Chul;Kim, Sang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.59-60
    • /
    • 2008
  • GaN-based light-emitting diodes (LEDs) with ZnO nanorod arrays on a planar indium tin oxide (ITO) transparent electrode were demonstrated. ZnO nanorods were grown into aqueous solution at low temperature of $90^{\circ}C$. Under 20 mA current injection, the light output efficiency of the LED with ZnO nanorod arrays on ITO was remarkably increased by about 40 % of magnitude compared to the conventional LED with only planar ITO. The enhancement of light output by the ZnO nanorod arrays is due to the formation of side walls and a rough surface resulting in multiple photon scattering at the LED surface.

  • PDF

Synthesis and Formation Mechanism of ZnO Nanotubes via an Electrochemical Method (전기화학적 방법에 의한 산화아연 나노튜브의 합성과 형성 기구)

  • Moon, Jin Young;Kim, Hyunghoon;Lee, Ho Seong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.400-405
    • /
    • 2011
  • ZnO nanotube arrays were synthesized by a two-step process: electrodeposition and selective dissolution. In the first step, ZnO nanorod arrays were grown on an Au/Si substrate by using a homemade electrodeposition system. ZnO nanorod arrays were then selectively dissolved in an etching solution composed of 0.125 M NaOH, resulting in hollow ZnO nanotube arrays. It is suggested that the formation mechanism of the ZnO nanotube arrays might be attributed to the preferred surface adsorption of hydroxide ion ($OH^{-1}$) on a positive polar surface followed by selective dissolution of the metastable Zn-terminated ZnO (0001) polar surface caused by the difference in the surface energy per unit area between the ZnO nanorod and nanotube.

Simple fabrication route for vertically-aligned CZTS nanorod arrays for photoelectrochemical application based on AAO template

  • Kim, Ji-Min;Yang, U-Seok;O, Yun-Jeong;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.402.2-402.2
    • /
    • 2016
  • In photoelectrochemical (PEC) water splitting, Cu2ZnSnS4 (CZTS) compound has attracted intense attention as a photocathode due to not only large optical absorption coefficient, but also earth-abundance of constituent elements and suitable band alignment. With rapid development of nanotechnology, one-dimensional nanostructures of CZTS have been investigated as a potential form to achieve high efficiency because the nanostructures are expected to be capable of capturing more light and enhancing charge separation and transport. Here, we report a well-controlled fabrication route for vertically-aligned CZTS nanorod arrays on anodic aluminium oxide (AAO) template via simple sol-gel process followed by deposition of ZnS or CdS buffer layers on the CZTS nanorod to enhance charge separation. The structure, morphology, composition, optical absorption, and PEC properties of the resulting CZTS nanorod samples were characterized using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectroscopy.

  • PDF

ZnO Nanorod Array as an Efficient Photoanode for Photoelectrochemical Water Oxidation (광전기화학적 물 산화용 산화아연 나노막대 광양극의 합성 및 특성평가)

  • Park, Jong-Hyun;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.239-245
    • /
    • 2020
  • Synthesizing one-dimensional nanostructures of oxide semiconductors is a promising approach to fabricate highefficiency photoelectrodes for hydrogen production from photoelectrochemical (PEC) water splitting. In this work, vertically aligned zinc oxide (ZnO) nanorod arrays are successfully synthesized on fluorine-doped-tin-oxide (FTO) coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal thin film. The structural, optical and PEC properties of the ZnO nanorod arrays synthesized at varying levels of Zn sputtering power are examined to reveal that the optimum ZnO nanorod array can be obtained at a sputtering power of 20 W. The photocurrent density and the optimal photocurrent conversion efficiency obtained for the optimum ZnO nanorod array photoanode are 0.13 mA/㎠ and 0.49 %, respectively, at a potential of 0.85 V vs. RHE. These results provide a promising avenue to fabricating earth-abundant ZnO-based photoanodes for PEC water oxidation using facile hydrothermal synthesis.

Fabrication of Biomimetic Superhydrophobic and Transparent ZnO Nanorod Arrays

  • Lee, Jeong-Han;Gwak, Geun-Jae;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.380-380
    • /
    • 2011
  • ZnO nanorod (NR) arrays prepared via simple ammonia hydrothermal method exhibiting superhydrophilicity, high transmittance and antireflection. These properties result from the unique surface structure and material property of ZnO NR arrays. Highly rough surface due to ZnO NRs enhanced hydrophobicity/hydrophilicity of the films and short NRs (about 300 nm) made ZnO arrays transparent. ZnO NR films were chemically modified by dipping the sample into 5mM stearic acid/ethanol solution for 3 hours. Then the ZnO NRs became superhydrophobic surfaces, whose contact angle reached 159.2$^{\circ}$ maintaining their high transmittance. These biomimetic ZnO NR arrays can be used in diverse field, such as antifogging/self-cleaning surfaces and optical devices.

  • PDF