Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.5.400

Synthesis and Formation Mechanism of ZnO Nanotubes via an Electrochemical Method  

Moon, Jin Young (School of Materials Science and Engineering, Kyungpook National University)
Kim, Hyunghoon (School of Materials Science and Engineering, Kyungpook National University)
Lee, Ho Seong (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.5, 2011 , pp. 400-405 More about this Journal
Abstract
ZnO nanotube arrays were synthesized by a two-step process: electrodeposition and selective dissolution. In the first step, ZnO nanorod arrays were grown on an Au/Si substrate by using a homemade electrodeposition system. ZnO nanorod arrays were then selectively dissolved in an etching solution composed of 0.125 M NaOH, resulting in hollow ZnO nanotube arrays. It is suggested that the formation mechanism of the ZnO nanotube arrays might be attributed to the preferred surface adsorption of hydroxide ion ($OH^{-1}$) on a positive polar surface followed by selective dissolution of the metastable Zn-terminated ZnO (0001) polar surface caused by the difference in the surface energy per unit area between the ZnO nanorod and nanotube.
Keywords
optoelectronic materials; chemical synthesis; microstructure; transmission electron microscopy (TEM); nanotube;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Y. L.-Wang, S. Bouchaib, T. Brouri, M. Capo-Chichi, K. Laurent, J. Leopoldes, S. Tusseau-Nenez, L. Lei, and Y. Chen, Mater. Sci. Eng. B 70, 107 (2010).
2 M. Izaki and T. Omi, J. Electrochem. Soc. 143, L53 (1996).   DOI
3 S. Peulon and D. Lincot, Adv. Mater. 8, 166 (1996).   DOI
4 M. H. Wong, A. Berenov, X. Qi, M. J. Kappers, Z. H. Barber, B. Illy, Z. Lockman, M. P. Ryan, and J. L. MacManus-Driscoll, Nanotechnology 14, 968 (2003).   DOI   ScienceOn
5 J. H. Kim, J. Y. Moon, H. S. Lee, B. H. Kong, H. K. Cho, E. S. Jung, H. S. Kim, and T. W. Kim, J. Korean Phys. Soc. 52, 1061 (2008).   DOI   ScienceOn
6 G. Zhang, A. Nakamura, T. Aoki, J. Temmyo, and Y. Matsui, Appl. Phys. Lett. 89, 113112 (2006).   DOI   ScienceOn
7 A. J. Cheng, Y. Tzeng, Y. Zhou, M. Park, T. Wu, C. Shannon, D. Wang, and W. Lee, Appl. Phys. Lett. 92, 092113 (2008).   DOI   ScienceOn
8 T. G. Woo, I. S. Park, W. Y. Jeon, E. K. Park, K. H. Jung, H. W. Lee, M. H. Lee, and K. W. Seol, Kor. J. Met. Mater. 48, 951 (2010).   DOI   ScienceOn
9 B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, and H. Koinuma, J. Phys. Chem. B 108, 10899 (2004).   DOI   ScienceOn
10 C. L. Cheng, J. S. Lin, and Y. F. Chen, J. Alloys Compd. 476, 903 (2009).   DOI   ScienceOn
11 Q. Yu, W. Fu, C. Yu, H. Yang, R. Wei, M. Li, S. Liu, Y. Sui, Z. Liu, M. Yuan, and G. Zou, J. Phys. Chem. C 111, 17521 (2007).   DOI   ScienceOn
12 G. She, X. Zhang, W. Shi, X. Fan, J. C. Chang, C. Lee, S. Lee, and C. Liu, Appl. Phys. Lett. 92, 053111 (2008).   DOI   ScienceOn
13 G. She, X. Zhang, W. Shi, X. Fan, and J. C. Chang, Electrochem. Commun. 9, 2784 (2007).   DOI   ScienceOn
14 J. Elias, R. Tena-Zaera, G. Wang, and C. Levy-Clement, Chem. Mater. 20, 6633 (2008).   DOI   ScienceOn
15 H. Kim, J. Y. Moon, and H. S. Lee, Electron. Mater. Lett. 5, 135 (2009).
16 W. Stumm and J. J. Morgan, Aquatic Chemistry, 3rd ed., p. 990-1002, Wiley, New York (1996).
17 G. Bruno, M. M. Giangregorio, G. Malandrino, P. Capezzuto, I. L. Fragala, and M. Losurdo, Adv. Mater. 21, 1700 (2009).   DOI   ScienceOn
18 M. Kim, Y. J. Hong, J. Yoo, G. Yi, G. Park, K. Kong, and H. Chang, Phys. Stat. Sol. (RRL) 2, 197 (2008).   DOI   ScienceOn
19 R. Konenkamp, R. C. Word, and C. Schiegel, Appl. Phys. Lett. 85, 6004 (2004).   DOI   ScienceOn
20 M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zuniga Perez. C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Berhrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Bookos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, Nanotechnology 20, 332001 (2009).   DOI   ScienceOn
21 G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, Appl. Phys. Lett. 94, 051106 (2009) .   DOI   ScienceOn
22 J. Yoo, C. H. Lee, Y. J. Doh, H. S. Jung, and G. C. Yi, Appl. Phys. Lett. 94, 223117 (2009).   DOI   ScienceOn
23 B. Pradhan, S. K. Batabyal, and A. J. Pal, Solar Energy Materials & Solar Cells 91, 769 (2007).   DOI   ScienceOn
24 X. Wang, C. J. Summers, and Z. L. Wang, Nano Lett. 4, 423 (2004).   DOI   ScienceOn
25 S. Li, X. Zhang, B. Yan, and T. Yu, Nanotechnology 20, 495604 (2009).   DOI   ScienceOn
26 I. Levin, A. Davydov, B. Nikoobakht, N. Sanford, and P. Mogilevsky, Appl. Phys. Lett. 87, 103110 (2005).   DOI   ScienceOn
27 K. P. Misra, R. K. Shukla, A. Srivastava, and A. Srivastava, Appl. Phys. Lett. 95, 031901 (2009).   DOI   ScienceOn