Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.3.725

Diameter Effect of Silver Nanorod Arrays to Surface-enhanced Raman Scattering  

Gu, Geun Hoi (Nano-materials Lab., Department of Chemistry, Seoul National University)
Kim, Min Young (Nano-materials Lab., Department of Chemistry, Seoul National University)
Yoon, Hyeok Jin (Nano-materials Lab., Department of Chemistry, Seoul National University)
Suh, Jung Sang (Nano-materials Lab., Department of Chemistry, Seoul National University)
Publication Information
Abstract
The effect the diameter of silver nanorod arrays whose distance between the nanorods was uniform at 65 nm have on Surface-enhanced Raman Scattering (SERS) has been studied by varying the diameter from 28 to 51 nm. Nanorod length was fixed at approximately 62 nm, which is the optimum length for SERS by excitation with a 632.8 nm laser line. The transverse and longitudinal modes of the surface plasmon of these silver nanorods were near 400 and 630 nm, respectively. The extinction of the longitudinal mode increased with increasing nanorod diameter, while the transverse mode did not change significantly. High-quality SERS spectra of p-aminothiophenol and benzenethiol adsorbed on the tips of the silver nanorods were observed by excitation with a 632.8 nm laser line. The SERS enhancement increased with increasing nanorod diameter. We concluded that the SERS enhancement increases when the diameter of silver nanorods is increased mainly by increasing the excitation efficiency of the longitudinal mode. The enhancement factor for the silver nanorods with a 51 nm diameter was approximately $2{\times}10^7$.
Keywords
Surface-enhanced Raman scattering; SERS; Silver nanorod arrays;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, G. L.; Lu, Y.; Kim, J.; Doll, J. C.; Lee, L. P. Adv. Mater. 2005, 17, 2683.   DOI
2 Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P. J. Am. Chem. Soc. 2003, 125, 588.   DOI
3 Kneipp, J.; Kneipp, H.; Rice, W. L.; Kneipp, K. Anal. Chem. 2005, 77, 2381.   DOI   ScienceOn
4 Grubisha, D. S.; Lipert, R. J.; Park, H. Y.; Driskell, J.; D. Porter, M. Anal. Chem. 2003, 75, 5936.   DOI   ScienceOn
5 Isola, N. R.; Stokes, D. L.; Vo-Dinh, T. Anal. Chem. 1998, 70, 1352.   DOI   ScienceOn
6 Lyandres, O.; Shah, N. C.; Yonzon, C. R.; Walsh, J. T., Jr.; Gluckberg, M. R.; Van Duyne, R. P. Anal. Chem. 2005, 77, 6134.   DOI
7 Graham, D.; Mallinder, B. J.; Smith, W. E. Angew. Chem.-Int. Edit. 2000, 39, 1061.   DOI
8 Premasiri, W. R.; Moir, D. T.; Klempner, M. S.; Krieger, N.; Jones II, G.; Ziegler, L. D. J. Phys. Chem. B 2005, 109, 312.   DOI
9 Kneipp, K.; Kneipp, H.; Deinum, G.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Appl. Spectrosc. 1998, 52, 175.   DOI
10 Habuchi, S.; Cotlet, M.; Gronheid, R.; Dirix, G.; Michiels, J.; Vanderleyden, J.; De Schryver, F. C.; Hofkens, J. J. Am. Chem. Soc. 2003, 125, 8446.   DOI
11 Michaels, A. M.; Nirmal, M.; Brus, L. E. J. Am. Chem. Soc. 1999, 121, 9932.   DOI   ScienceOn
12 Xu, H. X.; Bjerneld, E. J.; Kall, M.; Borjesson, L. Phys. Rev. Lett. 1999, 83, 4357.   DOI   ScienceOn
13 Nie, S. M.; Emery, S. R. Science 1997, 275, 1102.   DOI   ScienceOn
14 (a) Gu, G. H.; Suh, J. S. J. Phys. Chem. A 2009, 113, 8529.   DOI
15 Zong, R. L.; Zhou, J.; Li, Q.; Du, B.; Li, B.; Fu, M.; Qi, X. W.; Li, L. T.; Buddhudu, S. J. Phys. Chem. B 2004, 108, 16713.   DOI
16 Laurent, G.; Felidj, N.; Aubard, J.; Levi, G.; Krenn, J. R.; Henau, A.; Schider, G.; Leitner, A.; Aussenergg, F. R. J. Chem. Phys. 2005, 122, 011102.   DOI   ScienceOn
17 Gu, G. H.; Suh, J. S. Langmuir 2008, 24, 8934.   DOI
18 Masuda, H.; Hasegwa, F.; Ono, S. J. Electrochem. Soc. 1997, 144, L127.   DOI   ScienceOn
19 Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. J. Phys. Chem. 1994, 98, 12702.   DOI   ScienceOn
20 Lee, S. J.; Guan, Z.; Xu, H.; Moskovits, M. J. Phys. Chem. C 2007, 111, 17985.   DOI
21 Qiu, T.; Zhang, W.; Lang, X.; Zhou, Y.; Cui, T.; Chu, P. K. Small 2009, 5, 2333.   DOI
22 McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. J. Phys. Chem. B 2005, 109, 11279.   DOI
23 Ruths, M. Langmuir 2003, 19, 6788.   DOI
24 Saito, Y.; Kobayashi, M.; Hiraga, D.; Fujita, K.; Kawano, S.; Smith, N. I.; Inouye, Y.; Kawara, S. J. Raman Spectrosc. 2008, 39, 1643.   DOI
25 Sawai, Y.; Takimoto, B.; Nabika, H.; Ajito, K.; Murakoshi, K. J. Am. Chem. Soc. 2007, 129, 1658.   DOI
26 (b) Etchegoin, P. G.; Lacharmoise, P. D.; Le Ru, E. C. Anal. Chem. 2009, 81, 682.   DOI
27 Svedberg, F.; Li, Z. P.; Xu, H. X.; Kall, M. Nano Lett. 2006, 6, 2639.   DOI
28 Lee, S. J.; Morrill, A. R.; Moskovits, M. J. Am. Chem. Soc. 2006, 128, 2200.   DOI
29 Imura, K.; Okamoto, H.; Hossain, M. K.; Kitajima, M. Nano Lett. 2006, 6, 2173.   DOI
30 Joo, Y.; Suh, J. S. Bull. Korean Chem. Soc. 1995, 16, 808.
31 Suh, J. S.; Lee, J. S. Chem. Phys. Lett. 1997, 281, 384.   DOI
32 Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. F.; Wang, J. K.; Wang, Y. L. Adv. Mater. 2006, 18, 491.   DOI   ScienceOn
33 Jeong, D. H.; Zhang, Y. X.; Moskovits, M. J. Phys. Chem. B 2004, 108, 12724.   DOI   ScienceOn
34 Gu, G. H.; Kim, J.; Kim, L.; Suh, J. S. J. Phys. Chem. C 2007, 111, 7906.
35 Wang, D. S.; Chew, H.; Kerker, M. Appl. Opt. 1980, 19, 2256.   DOI
36 Kuwata, H.; Tamaru, H.; Esumi, K.; Miyano, K. Appl. Phys. Lett. 2003, 83, 4625.   DOI   ScienceOn
37 Suzuki, M.; Maekita, W.; Wada, Y.; Nakajima, K.; Kimura, K.; Fukuoka, T.; Mori, Y. Appl. Phys. Lett. 2006, 88, 203121.   DOI
38 Sauer, G.; Brehm, G.; Schneider, S.; Graener, H.; Seifert, G.; Nielsch, K.; Choi, J.; Goring, P.; Gosele, U.; Miclea, P.; Wehrspohn, R. B. J. Appl. Phys. 2005, 97, 6.
39 Domke, K. F.; Zhang, D.; Pettinger, B. J. Am. Chem. Soc. 2006, 128, 14721.   DOI