DOI QR코드

DOI QR Code

Vertically Aligned WO3-CuO Core-Shell Nanorod Arrays for Ultrasensitive NH3 Detection

  • Yan, Wenjun (Smart City Research Center of Zhejiang Hangzhou Dianzi University) ;
  • Hu, Ming (School of Microelectronics, Tianjin University)
  • Received : 2018.03.21
  • Accepted : 2018.09.14
  • Published : 2018.10.31

Abstract

Vertically aligned $WO_3$-CuO core-shell nanorod arrays for $NH_3$ sensing are prepared. The sensor is fabricated by preparing $WO_3$-CuO nanorod arrays directly on silicon wafer with interdigital Pt electrodes. The $WO_3$-CuO nanorod arrays are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sensor based on the vertically aligned $WO_3$-CuO nanorod arrays exhibits ultrasensitive $NH_3$ detection, indicating p-type behavior. The optimum sensing temperature is found to be about $150^{\circ}C$. Both response and recovery time to $NH_3$ ranging from 50 ppm to 500 ppm are around 10-15 s. A possible $NH_3$ sensing mechanism of the vertically aligned hybrid nanorod arrays is proposed.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. D. R. Miller, S. A. Akbar and P. A. Morris, Sens. Actuators B, Chem. 204, 250 (2014). https://doi.org/10.1016/j.snb.2014.07.074
  2. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont and S. Phanichphant, Sens. Actuators B, Chem. 160, 580 (2011). https://doi.org/10.1016/j.snb.2011.08.032
  3. T. M. Li, W. Zeng and Z. C. Wang, Sens. Actuators B, Chem. 221, 1570 (2015). https://doi.org/10.1016/j.snb.2015.08.003
  4. G. M. Zeng, Y. Zhu, Y. Zhang, C. Zhang, L. Tang, P. C. Guo, L. H. Zhang, Y. J. Yuan, M. Cheng and C. P. Yang, Environ. Sci. Nano 3, 1504 (2016). https://doi.org/10.1039/C6EN00323K
  5. Y. Zhu, G. M. Zeng, Y. Zhang, L. Tang, J. Chen, M. Cheng, L. H. Zhang, L. He, Y. Guo, X. X. He, M. Y. Lai and Y. B. He, Analyst 139, 5014 (2014). https://doi.org/10.1039/C4AN00874J
  6. Y. Qin, W. Xie, Y. Liu and Z. Ye, Sens. Actuators B, Chem. 223, 487 (2016). https://doi.org/10.1016/j.snb.2015.09.113
  7. J. W. Li, X. Liu, J. S. Cui and J. B. Sun, ACS Appl. Mater. Interfaces 7, 10108 (2015). https://doi.org/10.1021/am508121p
  8. F. E. Annanouch, Z. Haddi, S. Vallejos, P. Umek, P. Guttmann, C. Bittencourt and E. Llobet, ACS Appl. Mater. Interfaces 7, 6842 (2015). https://doi.org/10.1021/acsami.5b00411
  9. Y. L. Wang, J. Liu, X. B. Cui, Y. Gao, J. Ma, Y. F. Sun, P. Sun, F. M. Liu, X. S. Liang, T. Zhang and G. Y. Lu, Sens. Actuators B, Chem. 238, 473 (2017). https://doi.org/10.1016/j.snb.2016.07.085
  10. T. S. Yang, H. Tian, Y. Zhang and C. Li, Nano 11, 1650092 (2016). https://doi.org/10.1142/S1793292016500922
  11. J. H. Kim, A. Katoch, S. W. Choi and S. S. Kim, Sens. Actuators B, Chem. 212, 190 (2015). https://doi.org/10.1016/j.snb.2014.12.081
  12. S. Vallejos, T. Stoycheva, P. Umek, C. Navio, R. Snyders, C. Bittencourt, E. Llobet, C. Blackman, S. Moniz and X. Correig, Chem. Commun. 47, 565 (2011). https://doi.org/10.1039/C0CC02398A
  13. S. Srivastava, K. Jain, V. N. Singh, S. Singh, N. Vijayan, N. Dilawar, G. Gupta and T. D. Senguttuvan, Nanotechnology 23, 205501 (2012). https://doi.org/10.1088/0957-4484/23/20/205501
  14. S. L. Bai, D. Q. Li, D. M. Han, R. X. Luo, A. F. Chen and C. C. Liu, Sens. Actuators B, Chem. 150, 749 (2010). https://doi.org/10.1016/j.snb.2010.08.007
  15. N. S. Ramgir, C. P. Goyal, P. K. Sharma, U. K. Goutam, S. Bhattacharya, N. Datta, M. Kaur, A. K. Debnath, D. K. Aswal and S. K. Gupta, Sens. Actuators B, Chem. 188, 525 (2013). https://doi.org/10.1016/j.snb.2013.07.052
  16. S. Park, S. Park, J. Jung, T. Hong, S. Lee, H. W. Kim and C. Lee, Ceram. Int. 40, 11051 (2014). https://doi.org/10.1016/j.ceramint.2014.03.120
  17. W. W. Yu, Y. Sun, T. N. Zhang, K. N. Zhang, S. X. Wang, X. Chen and N. Dai, Part. Part. Syst. Charact. 33, 15 (2016). https://doi.org/10.1002/ppsc.201500178
  18. J. C. Zhou, S. W. Lin, Y. J. Chen and A. M. Gaskov, Appl. Surf. Sci. 403, 274 (2017). https://doi.org/10.1016/j.apsusc.2017.01.209
  19. Y. Liu, L. Zhao, J. Z. Su, M. T. Li and L. J. Guo, ACS Appl. Mater. Interfaces 7, 3532 (2015). https://doi.org/10.1021/am507230t
  20. W. J. Yan, M. Hu, J. R. Liang, D. F. Wang, Y. L. Wei and Y. X. Qin, Nano 11, 1650079 (2016). https://doi.org/10.1142/S179329201650079X
  21. Y. H. Lee, C. H. Choi, Y. T. Jang, E. K. Kim, B. K. Ju, N. K. Min and J. H. Ahn, Appl. Phys. Lett. 81, 745 (2002). https://doi.org/10.1063/1.1490625
  22. Y. H. Lee, D. H. Kim, C. H. Choi, Y. T. Jang and B. K. Ju, Appl. Phys. Lett. 85, 5977 (2004). https://doi.org/10.1063/1.1829156
  23. H. W. Long, Y. Q. Li and W. Zeng, Mater. Lett. 209, 342 (2017). https://doi.org/10.1016/j.matlet.2017.08.050
  24. Y.-B. Zhang, J. Yin, L. Li, L.-X. Zhang and L.-J. Bie, Sens. Actuators B, Chem. 202, 500 (2014). https://doi.org/10.1016/j.snb.2014.05.111
  25. H.-S. Woo, C. W. Na, I.-D. Kim and J.-H. Lee, Nanotechnology 23, 245501 (2012). https://doi.org/10.1088/0957-4484/23/24/245501