• Title/Summary/Keyword: nanoparticle (NP)

Search Result 91, Processing Time 0.032 seconds

Fabrication and Characterization of Polystyrene/Gold Nanoparticle Composite Nanofibers

  • Kim, Jung-Kil;Ahn, Hee-Joon
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Polystyrene/gold nanoparticle (PS/AuNP) composite fibers were fabricated using an electrospinning technique. Transmission electron microscopy (TEM) showed that the diameters of the naphthalenethiol-capped gold nanoparticles (prior to incorporation into the PS fibers) ranged from 2 to 5 nm. UV-vis spectroscopy revealed the surface plasmon peaks of the gold nanoparticles centered at approximately 512 nm, indicating that nano-sized Au particles are well-dispersed in solution. This was consistent with the TEM observations. The electrospun nanofibers of PS/AuNP composites were approximately 60-3,000 nm in diameter. The surface morphology of the PS/AuNP composite and the dispersability of the Au nanoparticles inside of PS after electrospinning process were investigated by SEM and TEM. The thermal behavior of the pure PS and PS/AuNP nanocomposites and fibers were examined by DSC.

Analysis of Broad-Range DNA Fragments with Yttrium Oxide or Ytterbium Oxide Nanoparticle/Polymer Sieving Matrix Using High-Performance Capillary Electrophoresis

  • Kwon, Hae-Myun;Kim, Yong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.297-301
    • /
    • 2009
  • We have developed the yttrium oxide (YNP) or ytterbium oxide (YbNP) nanoparticle/polymer matrices for the size-dependent separation of DNA ranging from 100 bp to 9,000 bp. High separation efficiency (> $10^6$ plates/m) and the baseline resolution for various DNA standards (100 bp, 500 bp, and 1 kbp DNA ladder) were obtained in 10 min with these matrices. The effects of concentrations of both polyethylene oxide (PEO) and nanoparticles were investigated and the highest performance was obtained at 0.02% PEO with 0.02% YNP or YbNP. Similar sieving power for both YNP and YbNP matrices was observed probably due to the similar sizes of nanoparticles, resulting in the formation of comparable sieving networks for DNA separation. For the reduction of electrosmotic flow, either dynamic or permanent coating of the capillary inner wall was compared and it turned out that PEO was superior to polyvinylpyrrolidone (PVP) or polyacrylamide (PAA) for better separation efficiency.

Observation of Electrocatalytic Amplification of Iridium Oxide (IrOx) Single Nanoparticle Collision on Copper Ultramicroelectrodes

  • Choi, Yong Soo;Jung, Seung Yeon;Joo, Jin Woo;Kwon, Seong Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2519-2522
    • /
    • 2014
  • Recently, the observation of the electrocatalytic behavior of individual nanoparticles (NPs) by electrochemical amplification method has been reported. For example, the Iridium oxide ($IrO_x$) NP collision on the Pt UME was observed via electrocatalytic water oxidation. However, the bare Pt UME had poor reproducibility for the observation of NP collision signal and required an inconvenient surface pre-treatment for the usage. In this manuscript, we has been investigated other metal electrode such as Cu UME for the reproducible data analysis and convenient use. The $IrO_x$ NP collision was successively observed on the bare Cu UME and the reproducibility in collision frequency was improved comparing with previous case using the $NaBH_4$ pre-treated Pt UME. Also, the adhesion coefficient between NP and the Cu UME was studied for better understanding of the single NP collision system.

Potential Antimicrobial Applications of Chitosan Nanoparticles (ChNP)

  • Rozman, Nur Amiera Syuhada;Yenn, Tong Woei;Ring, Leong Chean;Nee, Tan Wen;Hasanolbasori, Muhammad Ariff;Abdullah, Siti Zubaidah
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1009-1013
    • /
    • 2019
  • Polymeric nanoparticles are widely used for drug delivery due to their biodegradability property. Among the wide array of polymers, chitosan has received growing interest among researchers. It was widely used as a vehicle in polymeric nanoparticles for drug targeting. This review explored the current research on the antimicrobial activity of chitosan nanoparticles (ChNP) and the impact on the clinical applications. The antimicrobial activities of ChNP were widely reported against bacteria, fungi, yeasts and algae, in both in vivo and in vitro studies. For pharmaceutical applications, ChNP were used as antimicrobial coating for promoting wound healing, preventing infections and combating the rise of infectious disease. Besides, ChNP also exhibited significant inhibitory activities on foodborne microorganisms, particularly on fruits and vegetables. It is noteworthy that ChNP can be also applied to deliver antimicrobial drugs, which further enhance the efficiency and stability of the antimicrobial agent. The present review addresses the potential antimicrobial applications of ChNP from these few aspects.

Induction of DNA Damage in L5178Y Cells Treated with Gold Nanoparticle

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Song, Hyun-A;Jeong, Jin-Young;Lim, Yong-Taik;Chung, Bong-Hyun;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • As nanomaterials might enter into cells and have high reactivity with intracellular structures, it is necessary to assay possible genotoxic risk of them. One of these approaches, we investigated possible genotoxic potential of gold nanoparticle (AuNP) using L5178Y cells. Four different sizes of AuNP (4, 15, 100 or 200 nm) were synthesized and the sizes and structures of AuNP were analyzed using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and stability was analyzed by a UV/Vis. Spectrophotometer. Cytotoxicity was assessed by direct cell counting, and cellular location was detected by dark field microscope at 6, 24 and 48 h after treatment of AuNP. Comet assay was conducted to examine DNA damage and tumor necrosis factor (TNF)-${\alpha}$ mRNA level was assay by real-time reverse transcription polymerase chain reaction. Synthetic AuNP (4, 50, 100 and 200 nm size) had constant characteristics and stability confirmed by TEM, SEM and spectrophotometer for 10 days, respectively. Dark field microscope revealed the location of AuNP in the cytoplasm at 6, 24 and 48 h. Treatment of 4 nm AuNP induced dose and time dependent cytotoxicity, while other sizes of AuNP did not. However, Comet assay represented that treatment of 100 nm and 200 nm AuNP significantly increased DNA damage compared to vehicle control (p <0.01). Treatment of 100 nm and 200 nm AuNP significantly increased TNF-${\alpha}$ mRNA expression compared to vehicle control (p<0.05, p<0.01, respectively). Taken together, AuNP induced DNA damage in L5178Y cell, associated with induction of oxidative stress.

Effects of Ag Nanoparticle Flow Rates on the Progress of the Cell Cycle Under Continuously Flowing "Dynamic" Exposure Conditions

  • Park, Min Sun;Yoon, Tae Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.123-128
    • /
    • 2014
  • In this study, we have investigated the flow rate effects of Ag nanoparticle (NP) suspensions on the progress of the cell cycle by using a microfluidic image cytometry (${\mu}FIC$)-based approach. Compared with the conventional "static" exposure conditions, enhancements in G2 phase arrest were observed for the cells under continuously flowing "dynamic" exposure conditions. The "dynamic" exposure conditions, which mimic in vivo systems, induced an enhanced cytotoxicity by accelerating G2 phase arrest and subsequent apoptosis processes. Moreover, we have also shown that the increases in delivered NP dose due to the continuous supply of Ag NPs contributed dominantly to the enhanced cytotoxicity observed under the "dynamic" exposure conditions, while the shear stress caused by these slowly flowing fluids (i.e., flow rates of 6 and $30{\mu}L/h$) had only a minor influence on the observed enhancement in cytotoxicity.

Memory Characteristics of Pt Nanoparticle-embedded MOS Capacitors Fabricated at Room Temperature

  • Kim, Sung-Su;Cho, Kyoung-Ah;Kwak, Ki-Yeol;Kim, Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.162-164
    • /
    • 2012
  • In this study, we fabricate Pt nanoparticle (NP)-embedded MOS capacitors at room temperature and investigate their memory characteristics. The Pt NPs are separated from each other and situated between the tunnel and control oxide layers. The average size and density of the Pt NPs are 4 nm and $3.2{\times}10^{12}cm^{-2}$, respectively. Counterclockwise hysteresis with a width of 3.3 V is observed in the high-frequency capacitance-voltage curve of the Pt NP-embedded MOS capacitor. Moreover, more than 93% of the charge remains even after $10^4$ s.

Pt Deposits on Bi-Modified Pt Electrodes of Nanoparticle and Disk: A Contrasting Behavior of Formic Acid Oxidation

  • Lee, Hyein;Kim, Young Jun;Sohn, Youngku;Rhee, Choong Kyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.323-329
    • /
    • 2021
  • This work presents a contrasting behavior of formic acid oxidation (FAO) on the Pt and Bi deposits on different Pt substrates. Using irreversible adsorption method, Bi and Pt were sequentially deposited on Pt electrodes of nanoparticle (Pt NP) and disk (Pt disk). The deposited layers of Bi and Pt on the Pt substrates were characterized with X-ray photoelectron spectroscopy, transmission microscopy and scanning tunneling microscopy. The electrochemical behaviors and FAO enhancements of Pt NP and Pt disk with deposited Bi only (i.e., Bi/Pt NP and Bi/Pt disk), were similar to each other. However, additional deposition of Pt on Bi/Pt NP and Bi/Pt disk (i.e., Pt/Bi/Pt NP and Pt/Bi/Pt disk) changed the electrochemical behavior and FAO activity in different ways depending on the shapes of the Pt substrates. With Pt/Bi/Pt NP, the hydrogen adsorption was suppressed and the surface oxidation of Pt was enhanced; while with Pt/Bi/Pt disk, the opposite behavior was observed. This difference was interpreted as a stronger interaction between the deposited Bi and Pt on Pt NP than that on Pt disk. The FAO performance on Pt/Bi/Pt NP is much better than that on Pt/Bi/Pt disk, most likely due to the difference in the interaction between the deposited Pt and Bi depending on the shapes of Pt substrates. In designing FAO electrochemical catalysts using Pt and Bi, the shape of a Pt substrate was concluded to be critically considered.

Antibacterial Effect of Gelatin/Ag Nanoparticle Biocomposite Prepared Using Solution Plasma Generated by Unipolar DC Power (단극성 직류전원으로 유도된 용액 플라즈마를 이용하여 제조한 젤라틴/은 나노입자 생체복합재료의 항균 효과)

  • Kim, Seong-Cheol;Yoon, Gook-Jin;Nam, Sang-Woo;Lee, Sang-Yul;Kim, Jung-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.403-408
    • /
    • 2012
  • Gelatin/Ag nanoparticle (AgNP) biocomposite was synthesized using the solution plasma process (SPP) that has been recently introduced as an effective method for synthesis of nanoparticles. In this study, gelatin/AgNP biocomposite was synthesized using various concentrations of Ag precursor ($AgNO_3$) and gelatin in the range of 1-5 mM and 1-3% (w/w), respectively, without using any chemical reducing agent. Physical properties of the gelatin/AgNP biocomposites were analyzed using EDS, FE-SEM, and TEM. The results indicated that spherical AgNPs with approximately 12~20 nm in diameter were synthesized successfully in the gelatin matrix by SPP. As the concentration of gelatin was increased (3%, w/w), disperse stability of AgNP was improved and micro-pores of gelatin became smaller and denser in the 3D scaffold. Bactericidal activity of the AgNPs was examined against Staphylococcus aureus and Escherichia coli by measuring zone of growth inhibition and decrease in colony forming unit (CFU). CFUs of S. aureus and E. coli were decreased approximately to 56% and 0%, respectively, by the gelatin/AgNP biocomposite, Ag5G3.

Improvement of Thermal and Electrical Conductivity of Epoxy/boron Nitride/silver Nanoparticle Composite (열전도도 및 전기전도도가 향상된 에폭시/보론나이트라이드/은나노입자 복합체의 제조)

  • Kim, Seungyong;Lim, Soonho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.426-429
    • /
    • 2017
  • In this study, we investigated the effect of BN (boron nitride) on the thermal and the electrical conductivity of composites. In case of epoxy/BN composites, the thermal conductivity was increased as the BN contents were increased. Epoxy/AgNP (Ag nanoparticle) nanocomposites exhibited a slight change of thermal conductivity and showed a electrical percolation threshold at 20 vol% of Ag nanoparticles. At the fixed Ag nanoparticle content below the electrical percolation threshold, increasing the amount of BN enhanced the electrical conductivity as well as thermal conductivity for the epoxy/AgNP/BN composites.