Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.1.123

Effects of Ag Nanoparticle Flow Rates on the Progress of the Cell Cycle Under Continuously Flowing "Dynamic" Exposure Conditions  

Park, Min Sun (Department of Chemistry, Research Institute for Natural Sciences, Hanyang University)
Yoon, Tae Hyun (Department of Chemistry, Research Institute for Natural Sciences, Hanyang University)
Publication Information
Abstract
In this study, we have investigated the flow rate effects of Ag nanoparticle (NP) suspensions on the progress of the cell cycle by using a microfluidic image cytometry (${\mu}FIC$)-based approach. Compared with the conventional "static" exposure conditions, enhancements in G2 phase arrest were observed for the cells under continuously flowing "dynamic" exposure conditions. The "dynamic" exposure conditions, which mimic in vivo systems, induced an enhanced cytotoxicity by accelerating G2 phase arrest and subsequent apoptosis processes. Moreover, we have also shown that the increases in delivered NP dose due to the continuous supply of Ag NPs contributed dominantly to the enhanced cytotoxicity observed under the "dynamic" exposure conditions, while the shear stress caused by these slowly flowing fluids (i.e., flow rates of 6 and $30{\mu}L/h$) had only a minor influence on the observed enhancement in cytotoxicity.
Keywords
Nanoparticles cytotoxicity; Image cytometry; Ag nanoparticle; Dynamic exposure conditions;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Foldbjerg, R.; Dang, D. A.; Autrup, H. Arch. Toxicol. 2011, 85,743.   DOI
2 Kawata, K.; Osawa, M.; Okabe, S. Environ. Sci. Technol. 2009,43, 6046.   DOI   ScienceOn
3 Kim, S.; Choi, J. E.; Choi, J.; Chung, K. H.; Park, K.; Yi, J.; Ryu, D. Y. Toxicol. Vitro 2009, 23, 1076.   DOI   ScienceOn
4 Hinderliter, P. M.; Minard, K. R.; Orr, G.; Chrisler, W. B.; Thrall, B. D.; Pounds, J. G.; Teeguarden, J. G. Part. Fibre Toxicol. 2010,7, 36.   DOI   ScienceOn
5 Mahto, S. K.; Yoon, T. H.; Rhee, S. W. Biomicrofluidics 2010, 4,034111.   DOI
6 Park, M. S.; Park, J.; Jeon, S.; Yoon, T. H. J. Nanosci. Nanotechnol. 2013, 13, 7264.   DOI
7 El-Ali, J.; Sorger, P. K.; Jensen, K. F. Nature 2006, 442, 403.   DOI   ScienceOn
8 Hung, P. J.; Lee, P. J.; Sabounchi, P.; Lin, R.; Lee, L. P. Biotechnol. Bioeng. 2005, 89, 1.   DOI   ScienceOn
9 Furia, L.; Pelicci, P. G.; Faretta, M. Cytom. Part A 2013, 83A, 333.   DOI   ScienceOn
10 Kim, D.; Lin, Y. S.; Haynes, C. L. Anal. Chem. 2011, 83, 8377.   DOI   ScienceOn
11 Poulsen, C. R.; Culbertson, C. T.; Jacobson, S. C.; Ramsey, J. M. Anal. Chem. 2005, 77, 667.   DOI   ScienceOn
12 Walker, G. M.; Sai, J.; Richmond, A.; Stremler, M.; Chung, C. Y.; Wikswo, J. P. Lab Chip 2005, 5, 611.   DOI   ScienceOn
13 Kim, M. J.; Lim, K. H.; Yoo, H. J.; Rhee, S. W.; Yoon, T. H. Lab. Chip. 2010, 10, 415.   DOI   ScienceOn
14 Lim, K. H.; Park, J.; Rhee, S. W.; Yoon, T. H. Cytom. Part A 2012, 81A, 691.
15 Yoo, H. J.; Park, J.; Yoon, T. H. Cytom. Part A 2013, 83A, 356.
16 Park, J.; Yoon, T. H. Bull. Korean Chem. Soc. 2012, 33, 4023.   DOI   ScienceOn