DOI QR코드

DOI QR Code

Antibacterial Effect of Gelatin/Ag Nanoparticle Biocomposite Prepared Using Solution Plasma Generated by Unipolar DC Power

단극성 직류전원으로 유도된 용액 플라즈마를 이용하여 제조한 젤라틴/은 나노입자 생체복합재료의 항균 효과

  • Kim, Seong-Cheol (Department of Materials Engineering, Korea Aerospace University) ;
  • Yoon, Gook-Jin (Division of Bioengineering, Univ. of Incheon) ;
  • Nam, Sang-Woo (Division of Bioengineering, Univ. of Incheon) ;
  • Lee, Sang-Yul (Department of Materials Engineering, Korea Aerospace University) ;
  • Kim, Jung-Wan (Division of Bioengineering, Univ. of Incheon)
  • 김성철 (한국항공대학교 항공재료공학과) ;
  • 윤국진 (인천대학교 생명공학부) ;
  • 남상우 (인천대학교 생명공학부) ;
  • 이상율 (한국항공대학교 항공재료공학과) ;
  • 김정완 (인천대학교 생명공학부)
  • Received : 2012.09.17
  • Accepted : 2012.12.14
  • Published : 2012.12.28

Abstract

Gelatin/Ag nanoparticle (AgNP) biocomposite was synthesized using the solution plasma process (SPP) that has been recently introduced as an effective method for synthesis of nanoparticles. In this study, gelatin/AgNP biocomposite was synthesized using various concentrations of Ag precursor ($AgNO_3$) and gelatin in the range of 1-5 mM and 1-3% (w/w), respectively, without using any chemical reducing agent. Physical properties of the gelatin/AgNP biocomposites were analyzed using EDS, FE-SEM, and TEM. The results indicated that spherical AgNPs with approximately 12~20 nm in diameter were synthesized successfully in the gelatin matrix by SPP. As the concentration of gelatin was increased (3%, w/w), disperse stability of AgNP was improved and micro-pores of gelatin became smaller and denser in the 3D scaffold. Bactericidal activity of the AgNPs was examined against Staphylococcus aureus and Escherichia coli by measuring zone of growth inhibition and decrease in colony forming unit (CFU). CFUs of S. aureus and E. coli were decreased approximately to 56% and 0%, respectively, by the gelatin/AgNP biocomposite, Ag5G3.

본 연구에서는 용액 중 플라즈마 공정을 이용하여 젤라틴/Ag 나노입자(AgNP) 용액을 제조하고 동결 건조하여 3차원 비계 형태의 생체복합재료를 성공적으로 제조하였다. 본 공정에서는 환원제 사용 없이 플라즈마 방전 중 수소 라디칼과 Ag 이온의 환원을 통해, 젤라틴 기지재 내에 지름 12~20 nm 크기의 구형 AgNP가 효과적으로 형성되었다. 젤라틴 농도가 높을수록(3%) AgNP의 분산안정성이 좋았으며, 3차원 비계 형태의 젤라틴의 미세공 조직이 작아지고 밀도가 높아지는 것으로 나타났다. 또한 AgNP의 농도가 높을수록(5 mM) 항균효과가 좋았는데, Ag5G3 생체복합재료를 사용했을 때 황색포도상구균의 생장은 44% 감소되었고, 대장균의 생장은 100% 감소되어 그람 음성균에 대한 항균력이 더 좋은 것으로 나타났다.

Keywords

References

  1. Barry, A. L., M. B. Coyle, C. Thornsberry, E. H. Gerlach, and R. W. Hawkinson. 1979. Methods of measuring zones of inhibition with the Bauer-Kirby disk susceptibility test. J. Clinical Microbiology 10: 885-889.
  2. Bauer, A. W., W. M. M. Kirby, J. C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by standardized single disc method. American. J. Clinical Pathology. 45: 493-496.
  3. Cho, S. Y., J. W. Cho, and K. S. Lee. 2008. Antimicrobial effects of nanosilver-coated gauze on pathogenic bacteria causing skin infection. J. Korean Dermatological Association 46: 1595-1602.
  4. Draye, P., B. Delaey, A. V. Voorde, A. V. D. Bulcke, B. D. Reu, and E. Schacht. 1998. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19: 1677-1687. https://doi.org/10.1016/S0142-9612(98)00049-0
  5. Feng, Q. L., J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  6. Heo, Y. K. and S. Y. Lee. 2010. Synthesis and characterization of glold nanofluid prepared by the solution plasma processing. J. Korean Powder Metallurgy Institute 17: 1-5. https://doi.org/10.4150/KPMI.2010.17.1.001
  7. Heo, Y. K. and S. Y. Lee. 2011. Effects of the gap distance on the characteristics of gold nanoparticles in nanofluids synthesized Using solution plasma processing. Metals and Materials Int'l. 17: 431-434. https://doi.org/10.1007/s12540-011-0620-3
  8. Hwang, I., J. Cho, J. H. Hwang, B. Hwang, H. Choi, J. Lee, and D. G. Lee. 2011. Antimicrobial effects and mechanism(s) of silver nanoparticle. Korean J. Microbiol. Biotechnol. 39: 1-8.
  9. Kim, H. W., J. C. Knowles, and H. E. Kim. 2005. Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: Characterization and antibiotic drug release. J. Biomedical Materials research. 74B: 686-698 https://doi.org/10.1002/jbm.b.30236
  10. Mao, J. S., L. G. Zhao, Y. J. Yin, and K. D. Yao. 2003. Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials 24: 1067-1074. https://doi.org/10.1016/S0142-9612(02)00442-8
  11. Matsuda, S., N. Se, H. Iwata, and Y. Ikada. 2002. Evaluation of the antiadhesion potential of UV cross-linked gelatin films in a rat abdominal model. Biomaterials. 23:2 901- 2908. https://doi.org/10.1016/S0142-9612(01)00418-5
  12. Mishara, A., S. K. Tripathy, and S. I. Yun. Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. 2011. J. Nanoscience and Nanotechnology. 11: 243-248. https://doi.org/10.1166/jnn.2011.3265
  13. Nugent, R. P., M. A. Krohn, and S. L. Hillier. 1991. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J. Clinical Microbiology 29: 297-301.
  14. Pauling, L. and R. B. Corey. 1951. The Structure of Fibrous Proteins of the Collagen-Gelatin Group. Proc. N. A. S. 37: 272-281. https://doi.org/10.1073/pnas.37.5.272
  15. Pootawang, P., N. Saito, and O. Takai. 2011. Ag nanoparticle incorporation in mesoporous silica synthesized by solution plasma and their catalysis for oleic acid hydrogenation. Materials Letters 65: 1037-1040. https://doi.org/10.1016/j.matlet.2011.01.009
  16. Pootawang, P., N. Saito, and O. Takai. 2011. Solution plasma for template removal in mesoporous silica: pH and discharge time varying characteristics. Thin Solid Films 519: 7030- 7035. https://doi.org/10.1016/j.tsf.2011.01.213
  17. Pootawang, P., S. C. Kim, J. W. Kim, and S. Y. Lee. 2012. Incorporation of Ag nanometallic particles and water insoluble improvement in 3D gelatin matrix via the green strategy solution plasma. J. Nanoscience and Nanotechnology 12: 1-4. https://doi.org/10.1166/jnn.2012.5111
  18. Takai, O. 2008. Solution plasma processing. Pure Appl. Chem. 80: 2003-2011. https://doi.org/10.1351/pac200880092003
  19. Uh, Y., G. Y. Hwang, K. J. Yoon, H. Y. Kim, H. S. Uh, and O. K. Kwon. 2007. In Vitro Antimicrobial Activities of NanoSilver-coated Gauze against Clinical Isolates. Korean J. Clin Mircobiol. 10: 37-43.