Browse > Article
http://dx.doi.org/10.4313/TEEM.2012.13.3.162

Memory Characteristics of Pt Nanoparticle-embedded MOS Capacitors Fabricated at Room Temperature  

Kim, Sung-Su (Department of Electrical Engineering, Korea University)
Cho, Kyoung-Ah (Department of Electrical Engineering, Korea University)
Kwak, Ki-Yeol (Department of Electrical Engineering, Korea University)
Kim, Sang-Sig (Department of Electrical Engineering, Korea University)
Publication Information
Transactions on Electrical and Electronic Materials / v.13, no.3, 2012 , pp. 162-164 More about this Journal
Abstract
In this study, we fabricate Pt nanoparticle (NP)-embedded MOS capacitors at room temperature and investigate their memory characteristics. The Pt NPs are separated from each other and situated between the tunnel and control oxide layers. The average size and density of the Pt NPs are 4 nm and $3.2{\times}10^{12}cm^{-2}$, respectively. Counterclockwise hysteresis with a width of 3.3 V is observed in the high-frequency capacitance-voltage curve of the Pt NP-embedded MOS capacitor. Moreover, more than 93% of the charge remains even after $10^4$ s.
Keywords
Memory; Nanoparticle; Pt; Sputter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. P. Kim, T. H. Lee, D. U. Lee, E. K. Kim, H.-M. Koo, W.-J. Cho, and Y.-H. Kim Jpn. J. Appl. Phys. 47, 4996 (2008) [DOI: 10.1143/JJAP.47.4996].   DOI
2 Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Trans. Electron Devices 49, 1606 (2002) [DOI: 10.1109/TED.2002.802617].   DOI   ScienceOn
3 T. Teranishi, M. Hosoe, T. Tanaka, and M. Miyake, J. Phys. Chem. B 103, 3818 (1999) [DOI: 10.1021/jp983478m].
4 J. Binbin and S. Chihtang, J. Semicond. 32, 041001 (2011) [DOI: 10.1088/1674-4926/32/4/041001].   DOI   ScienceOn
5 M. F. Hung, Y. C. Wu, and Z. Y. Tang, Appl. Phys. Lett. 98, 162108 (2011) [DOI: 10.1063/1.3582925].   DOI   ScienceOn
6 D. Gupta, M. Anand, S. W. Ryu, Y. K. Choi, and S. H. Yoo, Appl. Phys. Lett. 93, 224106 (2008) [DOI: 10.1063/1.3041777].   DOI   ScienceOn
7 S. J. Kim and J. S. Lee, Nano Lett. 10, 2884 (2010) [DOI: 10.1021/nl1009662].   DOI   ScienceOn
8 P. K Singh, G. Bisht, R. Hofmann, K. Singh, N. Krishna, and S. Mahapatra, IEEE Electron Device Lett. 29, 1389 (2008) [DOI: 10.1109/LED.2008.2007308].   DOI   ScienceOn
9 E. Verrelli, D. Tsoukalas, K. Giannakopoulos, D. Kouvatsos, P. Normand, and D.E. Ioannou, Microelectron. Eng. 84, 1994 (2007) [DOI: 10.1016/j.mee.2007.04.078].   DOI   ScienceOn
10 Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett. 9, 1636 (2009) [DOI: 10.1021/nl900006g].   DOI   ScienceOn
11 J. Wu, S. Mao, Z. Ye, Z. Xie, and L. Zheng, J. Mater. Chem. 20, 6512 (2010) [DOI: 10.1039/C0JM00729C].   DOI   ScienceOn
12 S. Gopfert, L. Worschech, S. Lingemann, C. Schneider, D. Press, S. Hofling, and A. Forchel, Appl. Phys. Lett. 97, 222112 (2010) [DOI: 10.1063/1.3520522].   DOI   ScienceOn
13 I. Kang, Y. Kim, H. Seo, S. Son, E. Yoon, S. Joo, and C. Ahn, Appl. Phys. Lett. 98, 212102 (2011) [DOI: 10.1063/1.3593096].   DOI   ScienceOn
14 M. Lee, S. Kim, C. Lee, H. Yin, S. Ahn, B. Kang, K. Kim, J. Park, C. Kim, I. Song, S. Kim, G. Stefanovich, J. Lee, S. Hung, Y. Kim, and Y. Park, Adv. Funct. Mater. 19, 1587 (2009) [DOI: 10.1002/adfm.200801032].   DOI   ScienceOn
15 Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, Nano Lett. 9, 220 (2009) [DOI: 10.1021/nl802810g].   DOI   ScienceOn