• Title/Summary/Keyword: nanomaterial

Search Result 175, Processing Time 0.028 seconds

An overview of functionalised carbon nanomaterial for organic pollutant removal

  • Jun, Lau Yien;Mubarak, N.M.;Yee, Min Juey;Yon, Lau Sie;Bing, Chua Han;Khalid, Mohammad;Abdullah, E.C.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.175-186
    • /
    • 2018
  • Carbon nanomaterials (CNMs), particularly carbon nanotube and graphene-based materials, are rapidly emerging as one of the most effective adsorbents for wastewater treatment. CNMs hold great potential as new generation adsorbents due to their high surface to volume ratio, as well as extraordinary chemical, mechanical and thermal stabilities. However, implementation of pristine CNMs in real world applications are still hindered due to their poor solubility in most solvents. Hence, surface modification of CNMs is essential for wastewater treatment application in order to improve its solubility, chemical stability, fouling resistance and efficiency. Numerous studies have reported the applications of functionalized CNMs as very promising adsorbents for treating organic and inorganic wastewater pollutants. In this paper, the removal of organic dye and phenol contaminants from wastewater using various type of functionalized CNMs are highlighted and summarized. Challenges and future opportunities for application of these CNMs as adsorbents in sustainable wastewater treatment are also addressed in this paper.

Rapid Sintering of Nanocrystalline (W,Ti)C-Graphene Composites (나노구조 (W,Ti)C-Graphene 복합재료 급속소결)

  • Kim, Seong-Eun;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.854-860
    • /
    • 2018
  • In spite of the many attractive properties of (W,Ti)C, its low fracture toughness limits its wide application. To improve the fracture toughness generally a second phase is added to fabricate a nanostructured composite. In this regard, graphene was considered as the reinforcing agent of (W,Ti)C. (W,Ti)C-graphene composites that were sintered within 2 min using pulsed current activated heating under a pressure of 80 MPa. The rapid consolidation method allowed retention of the nano-scale microstructure by blocking the grain growth. The effect of graphene on the hardness and microstructure of the (W,Ti)C-graphene composite was studied using a Vickers hardness tester and FE-SEM. The grain size of (W,Ti)C was reduced remarkably by the addition of graphene. Furthermore, the hardness decreased and the fracture toughness improved with the addition of graphene.

Properties and Fabrication of 5Cu0.6Fe0.4-Al2O3 Composite by High Frequency Induction Heated Sintering (고주파유도가열 소결에 의한 5Cu0.6Fe0.4-Al2O3 복합재료제조 및 기계적 성질)

  • Lee, Dong-Mok;Song, Jun-Young;Park, Na-Ra;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.754-758
    • /
    • 2009
  • Dense $5Cu_{0.6}Fe_{0.4}-Al_{2}O_{3}$ composite was consolidated from mechanically synthesized powders by high frequency induction heating method within 2 min. Consolidation was accomplished under the combined effects of a induced current and mechanical pressure. Dense $5Cu_{0.6}Fe_{0.4}-Al_{2}O_{3}$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and the pulsed current. Fracture toughness and hardness of the composite are $7.6MPa{\cdot}m^{1/2}$ and $844kg/mm^{2}$ respectively.

Friction welding of multi-shape ABS based components with Nano Zno and Nano Sio2 as welding reinforcement

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.267-284
    • /
    • 2022
  • Due to the high usage of ABS in industries, such as aerospace, auto, recreational devices, boat, submarines, etc., the purpose of this project was to find a way to weld this material, which gives advantages, such as affordable, high speed, and good connection quality. In this experimental project, the friction welding method was applied with parameters such as numerical control (NC) machine with two different speeds and three cross-sections, including a flat surface, cone, and step. After the end of the welding process, samples were then applied for both tensile and bending tests of materials, and the results showed that, with increasing the machining velocity Considering of samples, the friction of the surface increased and then caused to increase in the surface temperature. Considering mentioned contents, the melting temperature of composite materials increased. This can give a chance to have a better combination of Nanomaterial to base melted materials. Thus, the result showed that, with increasing the weight percentage (wt %) of Nanomaterials contents, and machining velocity, the mechanical behavior of welded area for all three types of samples were just increased. This enhancement is due to the better melting process on the welded area of different Nano contents; also, the results showed that the shape of the welding area could play a significant role, and by changing the shape, the results also changed drastically.A better shape for the welding process was dedicated to the step surface.

Novel approach to improve nano green mortar behaviour using nano-paper waste with nano-metakaolin

  • Radwa Defalla Abdel, Hafez;Bassam A., Tayeh;Raghda Osama Abd-Al, Ftah;Khaled, Abdelsamie
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.341-354
    • /
    • 2022
  • Treatment of solid waste building materials is a crucial method of disposal and an area of ongoing research. New standards for the treatment of solid waste building materials are necessary due to multisource features, huge quantities, and complicated compositions of solid waste. In this research, sustainable nanomaterial mixtures containing nano-paper waste (NPW) and nano-metakaolin (NMK) were used as a substitute for Portland cement. Portland cement was replaced with different ratios of NPW and NMK (0%, 4%, 8%, and 12% by weight of cement) while the cement-to-water ratio remained constant at 0.4 in all mortar mixtures. The fresh properties had a positive effect on them, and with the increase in the percentage of replacement, the fresh properties decreased. The results of compressive strength at 7 and 28 days and flexural strength at 28 days show that the nanomaterials improved the strength, but the results of NMK were better than those of NPW. The best replacement rate was 8%, followed by 4%, and finally 12% for both materials. The combination of NMK and NPW as a replacement (12% NMK + 12% NPW) showed less shrinkage than the others because of the high pozzolanic reactivity of the nanomaterials. The combination of NMK and NPW improved the microstructure by increasing the hydration volume and lowering the water in the cement matrix, as clearly observed in the C-S-H decomposition.

A potential review on the influence of nanomaterials on the mechanical properties of high strength concrete

  • P. Jagadesh;Karthik Prabhu ;Moutassim Charai;Ibrahim Y. Hakeem;Emrah Madenci;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.649-666
    • /
    • 2023
  • In the current scenario, conventional concrete faces a substantial challenge in the modern era of the construction industry. Today's structures are massive, featuring innovative designs and strict time constraints. Conventional concrete does not provide the required compressive strength, tensile strength, flexural strength, toughness, and cracking resistance. As a result, most of engineers and professionals prefer to use ultra-high-performance concrete (UHPC), based on its wide advantages. Several advantages like mechanical and durability properties of UHPC provides dominant properties than the traditional concrete. Mix proportions of UHPC consists of higher powder content which provides maximum hydration and pozzolanic reaction, thereby contributing to the enhancement of the UHPC properties. Apart from that the nanomaterials provides the filler behavior, which will further improve the density. Enhanced density and mechanical properties lead to improved durability properties against water absorption and other typical chemicals. Nanomaterials are the most adopted materials for various applications, ranging in size from 0.1 nanometers to 100 nanometers. This article explores the effects of nanomaterial application in UHPC as a replacement for cementitious material or as an additive in the UHPC mix. The physical and durability properties modifications and improvements of UHPC, as well as negative effects, limitations, and shortcomings, are also analyzed.

2D-Covalent organic frameworks for bioimaging and therapeutic applications

  • Chanho Park;Dong Wook Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.171-176
    • /
    • 2020
  • Covalent organic frameworks (COFs) are porous crystalline polymers in which organic units are linked by covalent bonds and have a regular arrangement at the atomic level. Recently, the COFs have been much attention in bio-medical area such as bio-imaging, drug delivery, and therapeutics. These 2D nanoparticles are proving their value in nanomedicine due to their large surface area, functionalization through functional groups exposed on the surface, chemical stability due to covalent bonding, and high biocompatibility. The high ω-electron density and crystallinity of COFs makes it a promising candidate for bioimaging probes, and its porosity and large surface area make it possible to be utilized as a drug delivery vehicle. However, the low dispersibility in water, the cytotoxicity problems of COFs are still challenged to be solved in the future. In this regard, several efforts that increase the degree of dispersion through functionalization on the surface of COFs for the application to the biomedical field have been reported. In this review, we would like to describe the advantages and limitations of COFs for bio-imaging and anti-cancer treatment.

Synthesis, physical, optical and radiation shielding properties of Barium-Bismuth Oxide Borate-A novel nanomaterial

  • B.M. Chandrika;Holaly Chandrashekara Shastry Manjunatha;K.N. Sridhar;M.R. Ambika;L. Seenappa;S. Manjunatha;R. Munirathnam;A.J. Clement Lourduraj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1783-1790
    • /
    • 2023
  • Barium Bismuth Oxide Borate (BBOB) has been synthesized for the first time using solution combustion technique. SEM analysis reveal flower shape of the nanoparticles. The formation of the nanoparticles has been confirmed through XRD & FTIR studies which gives the physical and chemical structure of the novel material. The UV light absorption is observed in the range 200-300 nm. The present study highlights the radiation shielding ability of BBOB for different radiations like X/Gamma rays, Bremsstrauhlung and neutrons. The gamma shielding efficiency is comparable to that of lead in lower energy range and lesser than lead in the higher energy range. The bremsstrauhlung exposure constant is comparably larger for BBOB NPs than that of concrete and steel however it is lesser than that of lead. The beauty of BBOB nanoparticles lies in, high absorption of radiations and low emission of secondary radiations when compared to lead. In addition, the neutron shielding parameters like scattering length, absorption and scattering cross sections of BBOB are found to be much better than lead, steel and concrete. Thus, BBOB nanoparticles are highly efficient in absorbing X/Gamma rays, neutrons and bremsstrauhlung radiations.

Mechanical Properties and Sintering of Ultra Fine WC-Graphene-Al Composites (초미립 WC-Graphene-Al2O3 복합재료 소결 및 기계적 성질)

  • In-Jin Shon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.206-214
    • /
    • 2023
  • Tungsten carbide has many industrial applications due to its high electrical and thermal conductivity, high melting temperature, high hardness and good chemical stability. Because tungsten carbide is difficult to sinter, it is sintered with nickel or cobalt as a binder and is currently used in nozzles, cutting tools, and molds. Alumina is reported to be a viable binder for tungsten carbide due to its higher oxidation resistance and lower cost than nickel and cobalt. The ultrafine tungsten carbide-graphene-alumina composites were rapidly sintered in a high frequency induction heating active sintering unit. The microstructure and mechanical properties (fracture toughness and hardness) of the composites were investigated and analyzed by Vickers hardness tester and electron microscope. Since the high-frequency induction heating sintering method enables high-speed sintering, ultrafine composites can be prepared by preventing grain growth. In the tungsten carbide-graphene-alumina composites, the grain size of tungsten carbide increased with the amount of alumina participation. The hardness and fracture toughness of the tungsten carbide-5% graphene- x% alumina (x = 0, 5, 10,15) composites were 5.1, 8.6, 8.6, and 8.4 MPa-m1/2 and 2384, 2168, 2165, and 2102 kg/mm2, respectively. The fracture toughness increased without a significant decrease in hardness. Sinterability was improved by adding alumina to tungsten carbide-graphene.

Assessment of the Mechanical Performance of Nano-Silica and Nano-Calcite Incorporated Limestone Calcined Clay Cement (LC3) Paste (나노실리카와 나노칼사이트 혼입 석회석 소성 점토 시멘트(LC3) 페이스트의 기계적 성능 평가)

  • Kim, Gyeong-Ryul;Cho, Seong-Min;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.151-152
    • /
    • 2023
  • This study investigates the effect of nano-silica and nano-calcite on the hydration properties and mechanical performance of limestone calcined clay cement (LC3) paste. The pastes were synthesized by replacing limestone with nano-silica and nano-calcite in order to enhance the mechanical properties in both early and late stages of hydration. The nano-calcite enhanced the strength of LC3 pastes at 1 day of hydration, however, the strength decreased compared to the ordinary LC3 pastes afterwards due to excessive amount of carboaluminate produced in the pastes. On the other hand, nano-silica improved the mechanical properties of LC3 pastes at all ages of hydration. This is mainly due to the nucleation effect and pozzolanic reaction of nano-silica, affecting the early age and late ages of hydration, respectively. The nucleation effect of both nanomaterials were confirmed by the analysis of hydration heat, supporting the enhanced early age strength of nanomaterial incorporated LC3 pastes. Furthermore, the dense matrix was shown in the pore size distribution, and the increased C-S-H due to the pozzolanic reaction evidence the improved compressive and splitting tensile strength of nano-silica incorporated LC3 pastes.

  • PDF