Browse > Article

Properties and Fabrication of 5Cu0.6Fe0.4-Al2O3 Composite by High Frequency Induction Heated Sintering  

Lee, Dong-Mok (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
Song, Jun-Young (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
Park, Na-Ra (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.47, no.11, 2009 , pp. 754-758 More about this Journal
Abstract
Dense $5Cu_{0.6}Fe_{0.4}-Al_{2}O_{3}$ composite was consolidated from mechanically synthesized powders by high frequency induction heating method within 2 min. Consolidation was accomplished under the combined effects of a induced current and mechanical pressure. Dense $5Cu_{0.6}Fe_{0.4}-Al_{2}O_{3}$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and the pulsed current. Fracture toughness and hardness of the composite are $7.6MPa{\cdot}m^{1/2}$ and $844kg/mm^{2}$ respectively.
Keywords
nanomaterial; composite; nanopowder; $Fe-Al_{2}O_{3}$; $Cu-Al_{2}O_{3}$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 W. G. Fahrenholtz, D. T. Ellerby, and R. E. Loehman, J. Am. Ceram. Soc. 83, 1279 (2000)   DOI
2 S. K. Bae, I. J. Shon, J. M. Doh, J. K. Yoon, and I. Y. Ko, Scr. Mater. 58, 425 (2008)   DOI   ScienceOn
3 M. S. El-Eskandarany, J. Alloys & Compounds 305, 225 (2000)   DOI   ScienceOn
4 L. Fu, L. H. Cao, and Y. S. Fan, Scr. Mater. 44, 1061 (2001)   DOI   ScienceOn
5 H. C. Kim, I. J. Shon, I. K. Jeong, and I. Y. Ko, Met. Mater. Int. 12, 393 (2006)   DOI   ScienceOn
6 J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004)   DOI   ScienceOn
7 M. N. Rahaman, A. Yao, B. S. Bal, J. P. Garino, and M. D. Ries, J. Am. Ceram. Soc. 90, 1965 (2007)   DOI   ScienceOn
8 I. J. Shon, D. K. Kim, I. Y. Ko, J. K. Yoon, and K. T. Hong, Mater. Sci. Forum 525, 534 (2007)
9 A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, Mater. Sci. Eng. A 383, 229 (2004)   DOI   ScienceOn
10 D. Y. Oh, H. C. Kim, J. K. Yoon, and I. J. Shon, J. Alloys & Compound. 395, 174 (2005)   DOI   ScienceOn
11 Z. Fang and J. W. Eason, Int. J. of Refractory Met. & Hard Mater. 13, 297 (1995)   DOI   ScienceOn
12 K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982)   DOI
13 Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002)   DOI   ScienceOn
14 J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003)   DOI   ScienceOn
15 H. C. Kim, I. J. Shon, I. J. Jeong, I. Y. Ko, J. K. Yoon, and J. M. Doh, Met. Mater. Int. 13, 39 (2007)   DOI   ScienceOn
16 C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach. Plenum Press, p. 213, New York (1998)
17 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004)   DOI   ScienceOn
18 W. H. Tuan and R. J. Brook, J. Europ. Ceram. Soc. 6, 31 (1990)   DOI   ScienceOn