Browse > Article
http://dx.doi.org/10.3365/KJMM.2018.56.12.854

Rapid Sintering of Nanocrystalline (W,Ti)C-Graphene Composites  

Kim, Seong-Eun (Division of Advanced Materials Engineering, Research Center of Hydrogen Fuel Cell, Chonbuk National University)
Shon, In-Jin (Division of Advanced Materials Engineering, Research Center of Hydrogen Fuel Cell, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.56, no.12, 2018 , pp. 854-860 More about this Journal
Abstract
In spite of the many attractive properties of (W,Ti)C, its low fracture toughness limits its wide application. To improve the fracture toughness generally a second phase is added to fabricate a nanostructured composite. In this regard, graphene was considered as the reinforcing agent of (W,Ti)C. (W,Ti)C-graphene composites that were sintered within 2 min using pulsed current activated heating under a pressure of 80 MPa. The rapid consolidation method allowed retention of the nano-scale microstructure by blocking the grain growth. The effect of graphene on the hardness and microstructure of the (W,Ti)C-graphene composite was studied using a Vickers hardness tester and FE-SEM. The grain size of (W,Ti)C was reduced remarkably by the addition of graphene. Furthermore, the hardness decreased and the fracture toughness improved with the addition of graphene.
Keywords
sintering; mechanical properties; composite; nanomaterial;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Imasato, K. Tokumoto, T. Kitada, and S. Sakaguchi, Int. J. Refract. Met. Hard Mater. 13, 305 (1995).   DOI
2 Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, Corros. Sci. 48, 741 (2006).   DOI
3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos, Science 306, 666 (2004).   DOI
4 L. Zhang, W. C. Yue, T. Zhang, P. Li, Z. Xing, and Y. Chen, Carbon 61, 105 (2013).   DOI
5 S. M. Kwon, S. J. Lee, and I. J. Shon, Ceram. Int. 41, 835 (2015).   DOI
6 K. Niihara and A. Nikahira, Advanced structural inorganic composite, Elsevier Scientific Publishing Co., Trieste, Italy (1990).
7 I. J. Shon, H. S. Kang, J. M. Doh, and J. K. Yoon, Met. Mater. Int. 21, 345 (2015).   DOI
8 S. Berger, R. Porat, and R. Rosen, Prog. Mater. Sci. 42, 311 (1997).   DOI
9 B. R. Kang, J. K. Yoon, K. T. Hong, and I. J. Shon, Met. Mater. Int. 21, 698 (2015).   DOI
10 B. R. Kang and I. J. Shon, Korean J. Met. Mater. 53, 320 (2015).   DOI
11 Z. Shen, M. Johnsson, Z. Zhao ,and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).   DOI
12 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004).   DOI
13 Y. Gu, P. Shen, N. N. Yang, and K. Z. Cao, J. Alloy. Compd. 586, 80 (2014).   DOI
14 I. J. shon, Ceram. Int. 43, 890 (2017).   DOI
15 S. M. Kwon, N. R. Park, J. W. Shin, S. H. Oh, B. S. Kim, and I. J. Shon, Korean J. Met. Mater. 53, 555 (2015).   DOI
16 C. Suryanarayana and M. Grant Norton, X-ray diffraction: a practical approach, Plenum Press, New York (1998).
17 K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1,12 (1982).
18 S. Takeuchi, Scripta Mater. 44, 1483 (2001).   DOI