DOI QR코드

DOI QR Code

Rapid Sintering of Nanocrystalline (W,Ti)C-Graphene Composites

나노구조 (W,Ti)C-Graphene 복합재료 급속소결

  • Kim, Seong-Eun (Division of Advanced Materials Engineering, Research Center of Hydrogen Fuel Cell, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, Research Center of Hydrogen Fuel Cell, Chonbuk National University)
  • 김성은 (전북대학교신소재공학부수소연료전지연구센터) ;
  • 손인진 (전북대학교신소재공학부수소연료전지연구센터)
  • Received : 2018.08.13
  • Accepted : 2018.11.05
  • Published : 2018.12.05

Abstract

In spite of the many attractive properties of (W,Ti)C, its low fracture toughness limits its wide application. To improve the fracture toughness generally a second phase is added to fabricate a nanostructured composite. In this regard, graphene was considered as the reinforcing agent of (W,Ti)C. (W,Ti)C-graphene composites that were sintered within 2 min using pulsed current activated heating under a pressure of 80 MPa. The rapid consolidation method allowed retention of the nano-scale microstructure by blocking the grain growth. The effect of graphene on the hardness and microstructure of the (W,Ti)C-graphene composite was studied using a Vickers hardness tester and FE-SEM. The grain size of (W,Ti)C was reduced remarkably by the addition of graphene. Furthermore, the hardness decreased and the fracture toughness improved with the addition of graphene.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원 (KETEP)

References

  1. S. Imasato, K. Tokumoto, T. Kitada, and S. Sakaguchi, Int. J. Refract. Met. Hard Mater. 13, 305 (1995). https://doi.org/10.1016/0263-4368(95)92676-B
  2. Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, Corros. Sci. 48, 741 (2006). https://doi.org/10.1016/j.corsci.2005.01.012
  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos, Science 306, 666 (2004). https://doi.org/10.1126/science.1102896
  4. L. Zhang, W. C. Yue, T. Zhang, P. Li, Z. Xing, and Y. Chen, Carbon 61, 105 (2013). https://doi.org/10.1016/j.carbon.2013.04.074
  5. S. M. Kwon, S. J. Lee, and I. J. Shon, Ceram. Int. 41, 835 (2015). https://doi.org/10.1016/j.ceramint.2014.08.042
  6. K. Niihara and A. Nikahira, Advanced structural inorganic composite, Elsevier Scientific Publishing Co., Trieste, Italy (1990).
  7. I. J. Shon, H. S. Kang, J. M. Doh, and J. K. Yoon, Met. Mater. Int. 21, 345 (2015). https://doi.org/10.1007/s12540-015-4051-4
  8. S. Berger, R. Porat, and R. Rosen, Prog. Mater. Sci. 42, 311 (1997). https://doi.org/10.1016/S0079-6425(97)00021-2
  9. B. R. Kang, J. K. Yoon, K. T. Hong, and I. J. Shon, Met. Mater. Int. 21, 698 (2015). https://doi.org/10.1007/s12540-015-4366-1
  10. B. R. Kang and I. J. Shon, Korean J. Met. Mater. 53, 320 (2015). https://doi.org/10.3365/KJMM.2015.53.5.320
  11. Z. Shen, M. Johnsson, Z. Zhao ,and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  12. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  13. Y. Gu, P. Shen, N. N. Yang, and K. Z. Cao, J. Alloy. Compd. 586, 80 (2014). https://doi.org/10.1016/j.jallcom.2013.10.021
  14. S. M. Kwon, N. R. Park, J. W. Shin, S. H. Oh, B. S. Kim, and I. J. Shon, Korean J. Met. Mater. 53, 555 (2015). https://doi.org/10.3365/KJMM.2015.53.8.555
  15. C. Suryanarayana and M. Grant Norton, X-ray diffraction: a practical approach, Plenum Press, New York (1998).
  16. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1,12 (1982).
  17. I. J. shon, Ceram. Int. 43, 890 (2017). https://doi.org/10.1016/j.ceramint.2016.09.169
  18. S. Takeuchi, Scripta Mater. 44, 1483 (2001). https://doi.org/10.1016/S1359-6462(01)00713-8