Properties and Fabrication of 5Cu0.6Fe0.4-Al2O3 Composite by High Frequency Induction Heated Sintering

고주파유도가열 소결에 의한 5Cu0.6Fe0.4-Al2O3 복합재료제조 및 기계적 성질

  • Lee, Dong-Mok (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Song, Jun-Young (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Park, Na-Ra (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
  • 이동목 (전북대학교 신소재공학부, 신소재개발 연구센터) ;
  • 송준영 (전북대학교 신소재공학부, 신소재개발 연구센터) ;
  • 박나라 (전북대학교 신소재공학부, 신소재개발 연구센터) ;
  • 손인진 (전북대학교 신소재공학부, 신소재개발 연구센터)
  • Received : 2009.04.08
  • Published : 2009.11.25

Abstract

Dense $5Cu_{0.6}Fe_{0.4}-Al_{2}O_{3}$ composite was consolidated from mechanically synthesized powders by high frequency induction heating method within 2 min. Consolidation was accomplished under the combined effects of a induced current and mechanical pressure. Dense $5Cu_{0.6}Fe_{0.4}-Al_{2}O_{3}$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and the pulsed current. Fracture toughness and hardness of the composite are $7.6MPa{\cdot}m^{1/2}$ and $844kg/mm^{2}$ respectively.

Keywords

Acknowledgement

Grant : 전략금속 산업원료화 기술개발

Supported by : 한국지질자원

References

  1. W. H. Tuan and R. J. Brook, J. Europ. Ceram. Soc. 6, 31 (1990) https://doi.org/10.1016/0955-2219(90)90032-B
  2. W. G. Fahrenholtz, D. T. Ellerby, and R. E. Loehman, J. Am. Ceram. Soc. 83, 1279 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01368.x
  3. S. K. Bae, I. J. Shon, J. M. Doh, J. K. Yoon, and I. Y. Ko, Scr. Mater. 58, 425 (2008) https://doi.org/10.1016/j.scriptamat.2007.10.029
  4. M. S. El-Eskandarany, J. Alloys & Compounds 305, 225 (2000) https://doi.org/10.1016/S0925-8388(00)00692-7
  5. L. Fu, L. H. Cao, and Y. S. Fan, Scr. Mater. 44, 1061 (2001) https://doi.org/10.1016/S1359-6462(01)00668-6
  6. I. J. Shon, D. K. Kim, I. Y. Ko, J. K. Yoon, and K. T. Hong, Mater. Sci. Forum 525, 534 (2007)
  7. Z. Fang and J. W. Eason, Int. J. of Refractory Met. & Hard Mater. 13, 297 (1995) https://doi.org/10.1016/0263-4368(95)92675-A
  8. A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, Mater. Sci. Eng. A 383, 229 (2004) https://doi.org/10.1016/j.msea.2004.05.071
  9. H. C. Kim, I. J. Shon, I. J. Jeong, I. Y. Ko, J. K. Yoon, and J. M. Doh, Met. Mater. Int. 13, 39 (2007) https://doi.org/10.1007/BF03027821
  10. H. C. Kim, I. J. Shon, I. K. Jeong, and I. Y. Ko, Met. Mater. Int. 12, 393 (2006) https://doi.org/10.1007/BF03027705
  11. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach. Plenum Press, p. 213, New York (1998)
  12. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982) https://doi.org/10.1007/BF00724706
  13. D. Y. Oh, H. C. Kim, J. K. Yoon, and I. J. Shon, J. Alloys & Compound. 395, 174 (2005) https://doi.org/10.1016/j.jallcom.2004.10.072
  14. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  15. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004) https://doi.org/10.1063/1.1774268
  16. J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004) https://doi.org/10.1016/j.intermet.2004.02.005
  17. J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003) https://doi.org/10.1016/S1359-6454(03)00284-2
  18. M. N. Rahaman, A. Yao, B. S. Bal, J. P. Garino, and M. D. Ries, J. Am. Ceram. Soc. 90, 1965 (2007) https://doi.org/10.1111/j.1551-2916.2007.01725.x