DOI QR코드

DOI QR Code

A potential review on the influence of nanomaterials on the mechanical properties of high strength concrete

  • P. Jagadesh (Department of Civil Engineering, Coimbatore Institute of Technology) ;
  • Karthik Prabhu (Department of Civil Engineering, Coimbatore Institute of Technology) ;
  • Moutassim Charai (Green Energy Park (IRESEN, UM6P)) ;
  • Ibrahim Y. Hakeem (Department of Civil Engineering, College of Engineering, Najran University) ;
  • Emrah Madenci (Department of Civil Engineering, Faculty of Engineering, Necmettin Erbakan University) ;
  • Yasin Onuralp Ozkilic (Department of Civil Engineering, Faculty of Engineering, Necmettin Erbakan University)
  • Received : 2023.03.20
  • Accepted : 2023.08.01
  • Published : 2023.09.25

Abstract

In the current scenario, conventional concrete faces a substantial challenge in the modern era of the construction industry. Today's structures are massive, featuring innovative designs and strict time constraints. Conventional concrete does not provide the required compressive strength, tensile strength, flexural strength, toughness, and cracking resistance. As a result, most of engineers and professionals prefer to use ultra-high-performance concrete (UHPC), based on its wide advantages. Several advantages like mechanical and durability properties of UHPC provides dominant properties than the traditional concrete. Mix proportions of UHPC consists of higher powder content which provides maximum hydration and pozzolanic reaction, thereby contributing to the enhancement of the UHPC properties. Apart from that the nanomaterials provides the filler behavior, which will further improve the density. Enhanced density and mechanical properties lead to improved durability properties against water absorption and other typical chemicals. Nanomaterials are the most adopted materials for various applications, ranging in size from 0.1 nanometers to 100 nanometers. This article explores the effects of nanomaterial application in UHPC as a replacement for cementitious material or as an additive in the UHPC mix. The physical and durability properties modifications and improvements of UHPC, as well as negative effects, limitations, and shortcomings, are also analyzed.

Keywords

Acknowledgement

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work, under the Research Groups Funding program grant code (NU/RG/SERC/12/11).

References

  1. Abhilash, P.P., Nayak, D. K., Sangoju, B, Kumar, R. and Kumar, V. (2021), "Effect of nano-silica in concrete; a review", Construct. Build. Mater., 278, 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347.
  2. Adam, M.A., Erfan, A.M., Habib, F.A. and El-Sayed, T.A. (2021) "Structural behavior of high-strength concrete slabs reinforced with GFRP bars", Polymers, 13(17), 2997.
  3. Adesina, A. (2019), "Durability enhancement of concrete using nanomaterials: an overview", Mater. Sci. Forum, 967, 221-227. https://doi.org/10.4028/www.scientific.net/MSF.967.221.
  4. Afzal, M.T. and Khuhnood, R.A. (2021), "Influence of carbon nano fibers (CNF) on the performance of high strength concrete exposed to elevated temperatures", Construct. Build. Mater., 268, 121108. https://doi.org/10.1016/j.conbuildmat.2020.121108.
  5. Ahangarnazha, B.H., Pourbaba, M. and Afkar, A. (2020), "Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high-performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)", Steel Compos. Struct., 35(4), 463-474. https://doi.org/10.12989/scs.2020.35.4.463.
  6. Ahmed, M.A., Hassanean, Y. A., Assaf, K.A. and Shawkey, M.A. (2015), "The effect of incorporation of ferrite nano-particles on compressive strength and re-sensitivity of self-compacting concrete", Open J. Civil Eng., 5(1), 131. https://10.4236/ojce.2015.51013.
  7. Ahmed, N.Y. and Alkhafaji, F.F. (2020), "Enhancements and mechanisms of nano alumina (Al2O3) on wear resistance and microstructure characteristics of concrete pavement", IOP Conference Series: Materials Science Engineering, 871(1), 012001. https://10.1088/1757-899X/871/1/012001.
  8. Akarsh, P.K. and Bhat, A.K. (2021), "Graphene oxide incorporated concrete for rigid pavement application", Trends in Civil Engineering and Challenges for Sustainability: Select Proceedings of CTCS, 199-219. https://10.1088/1757-899X/871/1/012001.
  9. Akarsh, P.K., Marathe, S. and Bhat, A.K. (2021), "Influence of graphene oxide on properties of concrete in the presence of silica fumes and M-sand", Construct. Build. Mater., 268, 121093. https://doi.org/10.1016/j.conbuildmat.2020.121093.
  10. Akarsh, P.K., Shrinidhi, D., Marathae, S. and Bhat, A.K. (2022), "Graphene oxide as nano-material in developing sustainable concrete-A brief review", Mater. Today: Proceedings, 1. https://10.1016/j.matpr.2021.12.510.
  11. Al-Tayeb, M.M., Aisheh, Y.I.A., Qaidi, S.M.A. and Tayeh, B.A. (2022), "Experimental and simulation study on the impact resistance of concrete to replace high amounts of fine aggregate with plastic waste", Case Studies Construct. Mater., 17, e01324, https://doi.org/10.1016/j.cscm.2022.e01324.
  12. Alghamdi, M.B., Fatima, B., Hussain, Z., Nisar, Z. and Alghamdi, H.A. (2023) "Peristaltic pumping of hybrid nanofluids through an inclined asymmetric channel: A biomedical application", Mater. Today Commun., 105684. https://doi.org/10.1016/j.mtcomm.2023.105684.
  13. Ali, L.M., Ouni, M.H.E., Raza, A., Janjua, S., Ahmad, Z., Ali, B., Kahla, N.B. and Bai, Y. (2021), "Experimental investigation on the mechanical and fracture evaluation of carbon Fiber-Reinforced cementitious composites with Nano-Calcium carbonate", Construct. Build. Mater., 308, 125095. https://doi.org/10.1016/j.conbuildmat.2021.125095.
  14. Almeshal, I., Al-Tayeb, M.M., Qaidi, S. M.A., Bakar, B.H.A. and Tayeh, B.A. (2022), "Mechanical properties of eco-friendly cements-based glass powder in aggressive medium", Materials today: proceedings, 58(4), 1582-1587, 2022. https://doi.org/10.1016/j.matpr.2022.03.613.
  15. Amin, M. and Abu el-hassan, K. (2015), "Effect of using different types of nano materials on mechanical properties of high strength concrete", Construct. Build. Mater., 80, 116-124. https://doi.org/10.1016/j.conbuildmat.2014.12.075.
  16. Amnieh, H.B. and Zamzam, M.S. (2017), "Theoretical and experimental analysis of wave propagation in concrete blocks subjected to impact load considering the effect of nanoparticles", Comput. Concrete, 20(6), 711-718. https://doi.org/10.12989/cac.2017.20.6.711.
  17. Arani, A.G., Farazin, A. and Mohammadimehr, M. (2021), "The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research", Adv. Nano Res., 10(4), 327-337. https://doi.org/10.12989/acc.2019.7.2.127.
  18. Aydin, A.C., Nasl, V. J. and Kotan, T. (2018), "The synergic influence of nano-silica and carbon nano tube on self-compacting concrete", J. Build. Eng., 20, 467-475. https://doi.org/10.1016/j.jobe.2018.08.013.
  19. Bautista-Gutierrez, K.P., Herrera-May, A.L., Santamaria-Lopez, J.M., Honorato-Moreno, A. and Zamora-Castro, S.A. (2019), "Recent progress in nanomaterials for modern concrete infrastructure: Advantages and challenges", Materials, 12(21), 3548. https://doi.org/10.3390/ma12213548.
  20. Bica, B.O. and Melo, J.V.S. (2020), "Concrete blocks nano-modified with zinc oxide (ZnO) for photocatalytic paving: Performance comparison with titanium dioxide (TiO2)", Construct. Build. Mater., 252, 119120. https://doi.org/10.1016/j.conbuildmat.2020.119120.
  21. Bidgoli, M.R. and Saeidifar, M. (2017), "Time-dependent buckling analysis of SiO2 nanoparticles reinforced concrete columns exposed to fire", Comput. Concrete, 20(2), 119-127. https://doi.org/10.12989/cac.2017.20.2.119.
  22. Cai, J., Pan, J., Li, G. and Elchalakani, M. (2023), "Behaviors of eccentrically loaded ECC-encased CFST columns after fire exposure", Eng. Struct., 289, 116258. https://doi.org/10.1016/j.engstruct.2023.116258
  23. Cao, M., Ming, X., He, K., Li, L. and Shen, S. (2019), "Effect of macro-, micro-and nano-calcium carbonate on properties of cementitious composites-A review", Materials, 12(5), 781. https://10.3390/ma12050781.
  24. Cao, M., Yuan, X., Ming, X. and Xie, C. (2022), "Effect of high temperature on compressive strength and microstructure of cement paste modified by micro-and nano-calcium carbonate particles", Fire Technology, 58(3), 1469-1491. https://doi.org/10.1007/s10694-021-01211-0
  25. Chekravarty, D.S.V.S.M.R.K., Mallika, A., Sravana, P. and Rao, S. (2022), "Effect of using nano silica on mechanical properties of normal strength concrete", Mater. Today: Proceedings, 51, 2573-2578. https://doi.org/10.1016/j.matpr.2021.12.409.
  26. Chintalapudi, K.A. and Pannem, R.M.R. (2021), "Strength properties of graphene oxide cement composites", Mater. Today: Proceedings, 45, 3971-3975. https://doi.org/10.1016/j.matpr.2020.08.369.
  27. Chu, H.J., Qin, J., Gao, L., Jiang, J., Wang, F. and Wang, D. (2022), "Effects of graphene oxide on mechanical properties and microstructure of ultra-high-performance lightweight concrete", J. Sustain. Cement-Based Mater., 1-14. https://doi.org/10.1080/21650373.2022.2104757.
  28. Chu, S.H., Li, L.G. and Kwan, A.K.H. (2021), "Development of extrudable high strength fiber reinforced concrete incorporating nano calcium carbonate", Additive Manufact., 37, 101617. https://doi.org/10.1016/j.addma.2020.101617.
  29. Cuenca, E.L., D'Ambrosio, L., Lizunov, D., Tretjakov, A., Volobujeva, O. and Ferrara, L. (2021), "Mechanical properties and self-healing capacity of Ultra High-Performance Fibre Reinforced Concrete with alumina nano-fibres: Tailoring Ultra High Durability Concrete for aggressive exposure scenarios", Cement Concrete Compos., 118, 103956. https://doi.org/10.1016/j.cemconcomp.2021.103956.
  30. Dahlan, A.S. (2021), "Impact of nanotechnology on high performance cement and concrete", J. Molecular Struct., 1223, 128896. https://doi.org/10.1016/j.molstruc.2020.128896.
  31. Daneshjoo, V.A. (2019), "Effect of nano calcium carbonate on mechanical strength and permeability of roller-compacted concrete", J. Eng. Geology, 13(1), 45-68.
  32. Devi, S.C. and Khan, R.A. (2019), "Mechanical and durability performance of concrete incorporating graphene oxide", J. Mater. Eng. Struct., 6(2), 201-214. https://doi.org/10.1016/j.jobe.2019.101007.
  33. Devi, S.C. and Khan, R.A. (2020b), "Effect of graphene oxide on mechanical and durability performance of concrete", J. Build. Eng., 27, 101007. https://doi.org/10.1016/j.jobe.2019.101007.
  34. Devi, S.C. and Khan, R.A., (2020a), "Compressive strength and durability behavior of graphene oxide reinforced concrete composites containing recycled concrete aggregate", J. Build. Eng., 32, 101800. https://doi.org/10.1016/j.jobe.2020.101800.
  35. Diab, A.M., Elyamany, H.E., Elmoaty, A.E.M.A. and Sreh, M.M. (2019), "Effect of nanomaterials additives on performance of concrete resistance against magnesium sulfate and acids", Construct. Build. Mater., 210, 210-231. https://doi.org/10.1016/j.conbuildmat.2019.03.099.
  36. Dikkar, H.V., Kapre, V., Diwan, A. and Sekar, S.K. (2021), "Titanium dioxide as a photocatalyst to create self-cleaning concrete", Mater. Today: Proceedings, 45, 4058-4062. https://doi.org/10.1016/j.matpr.2020.10.948.
  37. Du, S., Wu, J., Alshareedah, O. and Shi, X. (2019), "Nanotechnology in cement-based materials: A review of durability, modeling, and advanced characterization", Nanomaterials, 9(9), 1213. https://10.3390/nano9091213
  38. El-Sayed, T.A. and Algash, Y.A. (2021), "Flexural behavior of ultra-high performance geopolymer RC beams reinforced with GFRP bars", Case Studies Construct. Mater., 15, e00604.
  39. El-Sayed, T.A., Erfan, A.M., Abdelnaby, R.M. and Soliman, M.K. (2022), "Flexural behavior of HSC beams reinforced by hybrid GFRP bars with steel wires", Case Studies Construct. Mater., 16, e01054.
  40. Elia, N.E., Ghosh, A., Akhnoukh, A.K. and Alsudani, Z.A. (2018), "Using nano-and micro-titanium dioxide (TiO2) in concrete to reduce air pollution", J. Nanomed. Nanotechnol., 9(3), 3-7. https://10.4172/2157-7439.1000505.
  41. Erfan, A.M., Abd Elnaby, R.M., Badr, A.A. and El-sayed, T.A. (2021), "Flexural behavior of HSC one way slabs reinforced with basalt FRP bars", Case Studie Construct. Mater., 14, e00513.
  42. Erfan, A.M., Algashb, Y.A. and El-Sayed, T.A. (2019), "Experimental and Analytical Behavior of HSC Columns Reinforced with Basalt FRP Bars", Int. J. Sci. Eng. Res., 10(9), 240-260.
  43. Erfan, A.M., Hassan, H.E., Hatab, K.M. and El-Sayed, T.A. (2020), "The flexural behavior of nano concrete and high strength concrete using GFRP", Construct. Build. Mater., 247, 118664.
  44. Fang, B., Hu, Z., Shi, T., Liu, Y., Wang, X., Yang, D. and Zhao, Z. (2022). "Research progress on the properties and applications of magnesium phosphate cement", Ceramics Int., https://doi.org/10.1016/j.ceramint.2022.11.078.
  45. Faried, A.S., Mostafa, S.A., Tayeh, B.A. and Tawfik, T.A. (2021a), "Mechanical and durability properties of ultra-high-performance concrete incorporated with various nano waste materials under different curing conditions", J. Build. Eng., 43, 102569. https://doi.org/10.1016/j.jobe.2021.102569.
  46. Faried, A.S., Mostafa, S.A., Tayeh, B.A. and Tawfik, T.A. (2021b), "The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties", Construct. Build. Mater., 290, 123279. https://doi.org/10.1016/j.conbuildmat.2021.123279.
  47. Feng, J.F., Yang, F. and Qian, S. (2021), "Improving the bond between polypropylene fiber and cement matrix by nano calcium carbonate modification", Construct. Build. Mater., 269, 121249. https://doi.org/10.1016/j.conbuildmat.2020.121249.
  48. Fu, Q.Z., Zhang, Z., Zhao, X., Xu, W. and Niu, D. (2022), "Effect of nano calcium carbonate on hydration characteristics and microstructure of cement-based materials: A review", J. Build. Eng., 50, 104220. https://doi.org/10.1016/j.jobe.2022.104220.
  49. Gajanan, K.A. (2018), "Applications of nanomaterials", Mater. Today: Proceedings, 5(1), 1093-1096. https://doi.org/10.1016/j.matpr.2017.11.187
  50. Ghafari, E.H., Costa, H. and Julio, E. (2015), "Critical review on eco-efficient ultra-high-performance concrete enhanced with nano-materials", Construct. Build. Mater., 101, 201-208. https://doi.org/10.1016/j.conbuildmat.2015.10.066.
  51. Ghareeb, K.S., Ahmed, H.E., El-Affandy, T.H., Deifalla, A.F. and El-Sayed, T.A. (2022), "The novelty of using glass powder and lime powder for producing UHPSCC", Buildings, 12(5), 684.
  52. Guleria, A.N. (2016), "Effects of silica fume (micro silica or nano silica) on mechanical properties of concrete: A review", Int. J. Civ. Eng. Technol, 7(4), 345-357. https://10.3141/2141-02
  53. Guo, K.H. (2019), "Effect of graphene oxide on chloride penetration resistance of recycled concrete", Nanotechnol. Rev., 8(1), 681-689. https://doi.org/10.1515/ntrev-2019-0059
  54. Hassan, A.H., Elkady, H. and Shaaban, I.G. (2019), "Effect of adding carbon nanotubes on corrosion rates and steel-concrete bond", Sci. Reports, 9(1), 6285. https://doi.org/10.1038/s41598-019-42761-2.
  55. He, R.X., Huang, X., Zhang, J., Geng, Y. and Guo, H. (2019), "Preparation and evaluation of exhaust-purifying cement concrete employing titanium dioxide", Materials, 12(13), 2182. https://10.3390/ma12132182.
  56. Hodhod, A.A. (2018), "Comparison between the effect of addition of nano-calcium carbonate and nano-Kaoline on developing the properties of reinforced concrete", In 10th International Conference on Nano-Technology in Construction, October, 1-24.
  57. Hong, X.J., Lee, J.C. and Qian, B. (2022), "Mechanical properties and microstructure of high-strength lightweight concrete incorporating graphene oxide", Nanomaterials, 12(5), 833. https:// 10.3390/nano12050833.
  58. Hou, S., Wu, S., Luo, J., Nasihatgozar, M. and Behshad, A. (2022), "Frequency response of elastic nanocomposite beams containing nanoparticles based on sinusoidal shear deformation beam theory", Steel Compos. Struct., 45(4), 555-562. https://doi.org/10.12989/scs.2022.45.4.555.
  59. Huang, H., Li, M., Yuan, Y. and Bai, H. (2022), "Theoretical analysis on the lateral drift of precast concrete frame with replaceable artificial controllable plastic hinges", J. Build. Eng., 62, 105386. https://doi.org/10.1016/j.jobe.2022.105386.
  60. Huang, H., Yuan, Y., Zhang, W. and Zhu, L. (2021), "Property assessment of high-performance concrete containing three types of fibers", Int. J. Concrete Struct. Mater., 15(1), 39. https://doi.org/10.1186/s40069-021-00476-7.
  61. Huseien, G.F., Shah, K.K. and Sam, A.R.M. (2019), "Sustainability of nanomaterials based self-healing concrete: An all-inclusive insight", J. Build. Eng., 23, 155-171. https://doi.org/10.1016/j.jobe.2019.01.032.
  62. Jaishankar, P.A. and Karthikeyam, C. (2017), "Characteristics of cement concrete with nano alumina particles", In IOP conference series: earth and environmental science, 80(1), 012005. https://10.1088/1755-1315/80/1/012005.
  63. Kaloop, M.R., Elrahman, M.A. and Hu, J.W. (2022), "Nondestructive tests for defections detection of nanoparticles in cement-based materials: A review", Adv. Nano Res., 12(1), 1-23. https://doi.org/10.12989/anr.2022.12.1.001.
  64. Kargar, M. and Bidgoli, M.R. (2018), "Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis", Steel Compos. Struct., 27(4), 465-477. https://doi.org/10.12989/scs.2018.27.4.465.
  65. Kargar, M., Bidgoli, M.R. and Mazaheri, H. (2022), "Dynamic bending analysis of laminated porous concrete beam reinforced by nanoparticles considering porosity effects", Steel Compos. Struct., 43(1), 129-137. https://doi.org/10.12989/scs.2022.43.1.129.
  66. Kasiri, R. and Massah, S. R. (2022), "Mathematical modeling of concrete beams containing GO nanoparticles for vibration analysis and measuring their compressive strength using an experimental method", Adv. Nano Res., 12(1), 73-79. https://doi.org/10.12989/anr.2022.12.1.073.
  67. Khayat, K.H., Meng, W., Vallurupalli, K. and Teng, L. (2019), "Rheological properties of ultra-high-performance concrete - An overview", Cement Concrete Res., 124, 105828. https://doi.org/10.1016/j.cemconres.2019.105828.
  68. Krishnaveni, C. and Selvan, S.S. (2021), "Study on nano-alumina in concrete", Mater. Today: Proceedings, 46, 3648-3652. https://doi.org/10.1016/j.matpr.2021.01.809.
  69. Kwalramani, M.A. and Syed, Z.I. (2018), "Application of nanomaterials to enhance microstructure and mechanical properties of concrete", Int. J. Integrated Eng., 10(2), 1. https://10.30880/ijie.2018.10.02.019.
  70. Li, D., Nie, J., Wang, H., Yan, J., Hu, C. and Shen, P. (2023), "Damage location, quantification and characterization of steel-concrete composite beams using acoustic emission", Eng. Struct., 283, 115866. https://doi.org/10.1016/j.engstruct.2023.115866.
  71. Li, L., Xuan, D., Sojobi, A.O., Liu, S., Chu, S.H. and Poon, C.S. (2021), "Development of nano-silica treatment methods to enhance recycled aggregate concrete", Cement Concrete Compos., 118, 103963. https://doi.org/10.1016/j.cemconcomp.2021.103963.
  72. Li, W.L. (2017), "A review of mechanical properties and durability of nano-concrete", In 2017 7th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2017), 5-8.
  73. Li, Y., Zhou, H., Xu, M., Jiang, L. and Xu, L. (2020), "The effect of graphene oxide on the mechanical properties of high-strength concrete", J. Nanomater., 2020. https://10.3390/nano10091718.
  74. Li, Z., Ding, S., Yu, X., Han, B. and Ou, J. (2018), "Multifunctional cementitious composites modified with nano titanium dioxide: A review", Compos. Part A: Appl. Sci. Manufact., 111, 115-137. https://doi.org/10.1016/j.compositesa.2018.05.019.
  75. Li, Z., Han, B., Yu, X., Dong, S., Zhang, L., Dong, X. and Ou, J. (2017), "Effect of nano-titanium dioxide on mechanical and electrical properties and microstructure of reactive powder concrete", Mater. Res. Express, 4(9), 095008. https://10.1088/2053-1591/aa87.
  76. Lin, Y.R., Cong, R., Chen, Y. and Fang, G. (2020), "Thermal properties and characterization of palmitic acid/nano silicon dioxide/graphene nanoplatelet for thermal energy storage", Int. J. Energy Res., 44(7), 5621-5633. https://doi.org/10.1002/er.5311.
  77. Liu, C., Huang, X., Wu, Y.Y., Deng, X., Zheng, Z. and Yang, B. (2022), "Studies on mechanical properties and durability of steel fiber reinforced concrete incorporating graphene oxide", Cement Concrete Compos., 130, 104508. https://doi.org/10.1016/j.cemconcomp.2022.104508.
  78. Lu, L. and Ouyang, D. (2017), "Properties of cement mortar and ultra-high strength concrete incorporating graphene oxide nanosheets", Nanomaterials, 7(7), 187. https://doi.org/10.3390/nano7070187.
  79. Maglad, A.M., Zaid, O., Arbili, M.M., Ascensao, G., Serbanoiu, A.A., Gradinaru, C.M., Garcia, R.M., Qaidi, S.M.A., Althoey, F. and Prado-Gil, J. (2022), "A study on the properties of geopolymer concrete modified with nano graphene oxide", Buildings, 12(8), 1066. https://doi.org/10.3390/buildings12081066.
  80. Maheswaran, S., Ramachandramurthy, A., Kumar V.R. and Karunanithi, A. (2021), "Characterisation studies on the particle size effect of calcium carbonate in high-strength concrete", Mag. Concrete Res., 73(13), 661-673. https://doi.org/10.1680/jmacr.19.00375.
  81. Mahmood, R.A. and Kockal, N.U. (2021), "Nanoparticles used as an ingredient in different types of concrete", SN Appl. Sci., 3, 1-17. https://doi.org/10.1007/s42452-021-04461-3.
  82. Maleki, M., Bidgoli, M.R. and Kolahchi, R. (2019), "Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods", Comput. Concrete, 24(2), 125-135. https://doi.org/10.12989/cac.2019.24.2.125.
  83. Meng, W.A. and Khayat, K.H. (2016), "Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers", Compos. Part B: Eng., 107, 113-122. https://doi.org/10.1016/j.compositesb.2016.09.069.
  84. Moghadas Nejad, F., Geraee, E. and Azarhoosh, A.R. (2020), "The effect of nano calcium carbonate on the dynamic behaviour of asphalt concrete mixture", Europ. J. Environ. Civil Eng., 24(8), 1219-1228. https://doi.org/10.1080/19648189.2018.1456486.
  85. Mohamed, A.M. (2016), "Influence of nano materials on flexural behavior and compressive strength of concrete", HBRC J., 12(2), 212-225 https://doi.org/10.1016/j.hbrcj.2014.11.006
  86. Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Alavi, S.A., Alambeigi, K., Bamdad, M., Yazdani, R. and Hanifehlou, S. (2018), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405.
  87. Mohammadyan-Yasouj, S.E., Heidari, N. and Shokravi, H. (2021), "Influence of waste alumina powder on self-compacting concrete resistance under elevated temperature", J. Build. Eng., 41, 102360. https://doi.org/10.1016/j.jobe.2021.102360.
  88. Mohammed, A., Sanjayan, J.G., Nazari, A. and Al-Saadi, N.T.K. (2017), "Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature", Australian J. Civil Eng., 15(1), 61-71. https://doi.org/10.1080/14488353.2017.1372849.
  89. Mohseni, E.M., Ranjbar, M., aYazdi, M.A., Hosseiny, S. and Roshandel, E. (2015), "The effects of silicon dioxide, iron (III) oxide and copper oxide nanomaterials on the properties of self-compacting mortar containing fly ash", Mag. Concrete Res., 67(20), 1112-1124. https://doi.org/10.1680/macr.15.00051.
  90. Mudasir, P.A. (2021), "Impact of carbon Nano tubes on fresh and hardened properties of conventional concrete", Mater. Today: Proceedings, 1.
  91. Mudasir, P.A. (2021), "The effect of water cement ratio on the characteristics of multi-walled carbon nanotube reinforced concrete", Mater. Today: Proceedings, 43, 3852-3855. https://doi.org/10.1016/j.matpr.2020.12.1176
  92. Muhsin, Z.F. and Fawzi, N.M., (2021), "Effect of nano calcium carbonate on some properties of reactive powder concrete", In IOP Conference Series: Earth and Environmental Science, 856(1), 012026. https://10.1088/1755-1315/856/1/012026.
  93. Murali, G., Abid, S.R., Karthikeyan, K., Haridharan, M.K., Amran, M. and Siva, A. (2021), "Low-velocity impact response of novel prepacked expanded clay aggregate fibrous concrete produced with carbon nano tube, glass fiber mesh and steel fiber", Construct. Build. Mater., 284, 122749. https://doi.org/10.1016/j.conbuildmat.2021.122749.
  94. Murali, G., Abid, S.R., Vatin, N.I., Amran, M. and Fediuk, R. (2022), "Influence of height and weight of drop hammer on impact strength and fracture toughness of two-stage fibrous concrete comprising nano carbon tubes", Construct. Build. Mater., 349, 128782. https://doi.org/10.1016/j.conbuildmat.2022.128782.
  95. Naskar, S. and Chakraborty, A.K., (2016), "Effect of nano materials in geopolymer concrete", Perspect. Sci., 8, 273-275. https://doi.org/10.1016/j.pisc.2016.04.049.
  96. Nassif, M.K., Erfan, A.M., Fadel, O.T. and El-sayed, T.A. (2021), "Flexural behavior of high strength concrete deep beams reinforced with GFRP bars", Case Studies Construct. Mater., 15, e00613.
  97. Nasution, A., Imran, I. and Abdullah, M., (2015), "Improvement of concrete durability by nanomaterials", Procedia Eng., 125, 608-612. https://doi.org/10.1016/j.proeng.2015.11.078.
  98. Nazar, S., Yang, J., Thomas, B.S., Azim, I. and Rehman, S.K. (2020), "Rheological properties of cementitious composites with and without nano-materials: A comprehensive review", J. Cleaner Product., 272, 122701. https://doi.org/10.1016/j.jclepro.2020.122701.
  99. Norhasri, M.M.S., Hamidah, M.S. and Fadzil, A.M. (2019), "Inclusion of nano metaclayed as additive in ultra-high-performance concrete (UHPC)", Construct. Build. Mater., 201, 590-598. https://doi.org/10.1016/j.conbuildmat.2019.01.006.
  100. Norhasri, M.M.S., Hamidah, M.S. and Fadzil, A.M., (2017), "Applications of using nano material in concrete: A review", Construct. Build. Mater., 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005.
  101. Orakzai, M.A. (2021), "Hybrid effect of nano-alumina and nano-titanium dioxide on Mechanical properties of concrete", Case Studies Construct. Mater., 14, e00483. https://doi.org/10.1016/j.cscm.2020.e00483.
  102. Pietrzak, A.J. (2016), "Application of titanium dioxide in cement and concrete technology", Key Eng. Mater., 687, 243-249. https://doi.org/10.4028/www.scientific.net/KEM.687.243
  103. Poudyal, L., Adhikari, K. and Won, M., (2021), "Mechanical and durability properties of portland limestone cement (PLC) incorporated with nano calcium carbonate (CaCO3)", Materials, 14(4), 905. https://10.3390/ma14040905.
  104. Prabaharan, J.S. (2022), "High temperature effects on the compressive strength and UPV of nano alumina modified concrete containing sillimanite", Mater. Today: Proceedings, 62, 5613-5619. https://doi.org/10.1016/j.matpr.2022.04.827
  105. Prasad, H.R. and Sitaram, N. (2021), "Performance of nano materials for the strength development in concrete cube used as Partial replacement for cement at different temperatures", Mater. Today: Proceedings, 45, 7253-7258. https://10.1016/j.matpr.2021.03.415.
  106. Qaidi, S., Najm, H.M., Abed, S.M., Ozkilic, Y.O., Dughaishi, H. A., Alosta, M., Sabri, M.M.S., Alkhatib, F. and Milad, A. (2022), "Concrete containing waste glass as an environmentally friendly aggregate: a review on fresh and mechanical characteristics", Materials, 15(18), 6222. https://doi.org/10.3390/ma15186222.
  107. Qaidi, S.M.A., Dinkha, Y.Z., Haido, J.H., Ali, M.H. and Tayeh, B. A. (2021), "Engineering properties of sustainable green concrete incorporating eco-friendly aggregate of crumb rubber: A review", J. Cleaner Product., 324, 129251. https://doi.org/10.1016/j.jclepro.2021.129251.
  108. Qian, X., Wang, J., Wang, L. and Fang, Y., (2019), "Enhancing the performance of metakaolin blended cement mortar through in-situ production of nano to sub-micro calcium carbonate particles", Construct. Build. Mater., 196, 681-691. https://doi.org/10.1016/j.conbuildmat.2018.11.134.
  109. Rashad, A.M. (2015), "A synopsis about the effect of nano-titanium dioxide on some properties of cementitious materials-a short guide for civil engineer", Rev. Adv. Mater. Sci, 40, 72-88.
  110. Rashmi, R.A. and Padmapriya, R. (2020), "Mechanical and durability characteristics of multiwalled carbon nano tube in concrete", In IOP Conference Series: Materials Science and Engineering, 872(1), 012110. https://10.1088/1757-899X/872/1/012110.
  111. Rattan, A.P. (2016), "Use of nanomaterials in concrete", Int. J. Latest Res. Eng. Technol., 2(5), 81-84.
  112. Rawat, G., Gandi, S. and Murthy, Y.I. (2022), "A critical assessment on the effect of nano-titanium dioxide on the properties of concrete", Gradevinar, 74(7), 553-560. https://doi.org/10.14256/JCE.3291.2021.
  113. Rawat, G.S., Gandi, S. and Murthy, Y.I. (2022), "Strength and rheological aspects of concrete containing nano-titanium dioxide", Asian J. Civil Eng., 23(8), 1197-1208. https://10.1007/s42107-022-00476-2.
  114. Reddy, N.A.K. and Ramujee, K. (2022a), "Comparative study on mechanical properties of fly ash & GGBFS based geopolymer concrete and OPC concrete using nano-alumina", Mater. Today: Proceedings, 60, 399-404. https://10.1016/j.matpr.2022.01.260.
  115. Reddy, P.V.R.K. and Darapureddi, R.P. (2022b), "Investigation on the impact of graphene oxide on microstructure and mechanical behaviour of concrete", J. Build. Pathology Rehab., 7(1), 30. https:// 10.1007/s41024-022-00166-1.
  116. Reddy, S.R., Thejakala, K. and Desai, V.B. (2017), "A brief study on the strength properties of concrete modified with sintered fly ash aggregates and silicon dioxide (nano material)", Int. Res. J. Eng. Technol., 4(3), 1500-1508.
  117. Saleh, H.M.S., El-Saied, F.A., Salaheldin, T.A. and Hezo, A.A. (2018), "Macro-and nanomaterials for improvement of mechanical and physical properties of cement kiln dust-based composite materials", J. Cleaner Product., 204, 532-541. https://doi.org/10.1016/j.jclepro.2018.08.303.
  118. Sargunan, K.M. (2022), "Experimental investigations on mechanical strength of concrete using nano-alumina and nano-clay", Mater. Today: Proceedings, 62, 5420-5426. https://doi.org/10.1016/j.matpr.2022.03.703
  119. Sastry, K.V.S.G., Sahitya, P. and Ravitheja, A., (2021), "Influence of nano TiO2 on strength and durability properties of geopolymer concrete", Mater. Today: Proceedings, 45, 1017-1025. https://doi.org/10.1016/j.matpr.2020.03.139.
  120. Sathe, S., Kangda, M.Z., and Amaranatha, G.A. (2022), "Resistance against sulphate attack in concrete by addition of nano alumina", Mater. Today: Proceedings, 60, 294-298. https://doi.org/10.1016/j.matpr.2022.01.124.
  121. Sbia, L.A., Peyvandi, A., Soroushian, P., Balachandra, A.M. and Soboley, K. (2015), "Evaluation of modified-graphite nanomaterials in concrete nanocomposite based on packing density principles", Construct. Build. Mater., 76, 413-422. https://doi.org/10.1016/j.conbuildmat.2014.12.019.
  122. Shaikh, F.U.A. and Supit, S.W.M. (2015), "Compressive strength and durability of high-volume fly ash concrete reinforced with calcium carbonate nanoparticles", Fillers Reinforce. Adv. Nanocompos., 275-307. https://doi.org/10.1016/B978-0-08-100079-3.00011-9.
  123. Shao, Z., Chen, J., Xie, Q. and Mi, L. (2023), "Functional metal/covalent organic framework materials for triboelectric nanogenerator", Coordination Chemistry Rev., 486, 215118. https://doi.org/10.1016/j.ccr.2023.215118.
  124. Shareef, K.M. (2017), "A feasibility study on mechanical properties of concrete with graphene oxide", Lateral, 5.
  125. Sharma, S., Kaur, I. and Gupta, S. (2019), "Effect of fly ash and nano titanium dioxide on compressive strength of concrete", Int. Res. J. Eng. Technol., 6(7), 2262-2265.
  126. Shen, W., Zhang, C., Li, Q., Zhang, W., Cao, L. and Ye, J. (2015), "Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete", J. Cleaner Product., 87, 762-765. https://doi.org/10.1016/j.jclepro.2014.10.014.
  127. Shilar, F., Ganachari, S.V., Patil, V.B., Khan, Y.T.M., Almakayeel, N. and Alghamdi, S. (2022), "Review on the relationship between nano modifications of geopolymer concrete and their structural characteristics", Polymers, 14(7), 1421. https://10.3390/polym14071421.
  128. Shokravi, H.S.Y., Yasouj, S.E.M., Koloor, S.S.R., Petru, M. and Heidarrezaei, M. (2021), "Effect of alumina additives on mechanical and fresh properties of self-compacting concrete: A review", Processes, 9(3), 554. https://doi.org/10.3390/pr9030554.
  129. Sikora, P.M., Elrahman, M.A. and Stephan, D. (2018), "The influence of nanomaterials on the thermal resistance of cement-based composites-a review", Nanomaterials, 7, 465. https://doi.org/10.3390/nano8070465.
  130. Silvestre, J.N. and Silvestre, N. (2016), "Review on concrete nanotechnology", Europ. J. Environ. Civil Eng., 20(4), 455-485. https://doi.org/10.1080/19648189.2015.1042070.
  131. Singh, L.P., Ali, D., Tyagi, L., Sharma, U., Singh, R. and Hou, P. (2019), "Durability studies of nano-engineered fly ash concrete", Construct. Build. Mater., 194, 205-215. https://doi.org/10.1016/j.conbuildmat.2018.11.022.
  132. Singh, N.B., Kalra, M. and Saxena, S.K. (2017), "Nanoscience of cement and concrete", Mater. Today: Proceedings, 4(4), 5478-5487. https://doi.org/10.1016/j.matpr.2017.06.003.
  133. Somasri, M. and Kumar, B.N. (2021), "Graphene oxide as Nano material in high strength self-compacting concrete", Mater. Today: Proceedings, 43, 2280-2289. https://doi.org/10.1016/j.matpr.2020.12.1085.
  134. Song, X.B., Li, C.Z., Chen, D.D. and Gu, X.L. (2021), "Interfacial mechanical properties of recycled aggregate concrete reinforced by nano-materials", Construct. Build. Mater., 270, 121446. https://doi.org/10.1016/j.conbuildmat.2020.121446.
  135. Sorathiya, J., Shah, S.G. and Smit, K. (2017), "Effect on addition of nano "titanium dioxide" (TiO2) on compressive strength of cementitious concrete", Kalpa Publication. Civil Eng., 1, 219-225. https://doi.org/10.29007/sq9d
  136. Su, Y., Li, J., Wu, C., Wu, P. and Li, Z.X. (2016), "Influences of nano-particles on dynamic strength of ultra-high-performance concrete", Compos. Part B: Eng., 91, 595-609. https://doi.org/10.1016/j.compositesb.2016.01.044.
  137. Sun, X., Chen, Z., Sun, Z., Wu, S., Guo, K., Dong, Z. and Peng, Y. (2023), "High-efficiency utilization of waste shield slurry: A geopolymeric Flocculation-Filtration-Solidification method", Construct. Build. Mater., 387, 131569. https://doi.org/10.1016/j.conbuildmat.2023.131569.
  138. Svintsov, A.P., Galishnikova, V.V. and Stashevskaya, N.A. (2020), "Dataset on the effect of nano-modified additives of concrete mixes technological properties for winter concreting", Data Brief, 31, 105756. https://doi.org/10.1016/j.dib.2020.105756.
  139. Szymanowski, J. and Sadowski, L. (2019), "The development of nanoalumina-based cement mortars for overlay applications in concrete floors", Materials, 12(21), 3465. https://doi.org/10.3390/ma12213465.
  140. Taherifar, R., Mahmoudi, M., Esfahani, M.H.N., Khuzani, N.A., Esfahani, S.N. and Chinaei, F. (2019), "Buckling analysis of concrete plates reinforced by piezoelectric nanoparticles", Comput. Concrete, 23(4), 295-301. https://doi.org/10.12989/cac.2019.23.4.295.
  141. Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct., 37(1), 99-115. https://doi.org/10.12989/scs.2020.37.1.099.
  142. Tao Shi, Y.L.Z.H. (2022), "Deformation performance and fracture toughness of carbon nanofiber modified cement-based materials. ACI Mater. J., 119(5). https://doi.org/10.14359/51735976.
  143. Tawfik, T.A., Metwally, K.A., Beshlawy, S.A.E., Saffar, D.M.A., Tayeh, B.A. and Hassan, H.S. (2021), "Exploitation of the nanowaste ceramic incorporated with nano silica to improve concrete properties", J. King Saud Univ. Eng. Sci., 33(8), 581-588. https://doi.org/10.1016/j.jksues.2020.06.007.
  144. Thanmanaselvi, M. and Ramasamy, V. (2021), "A study on durability characteristics of nano-concrete", Mater. Today: Proceedings, 1. https://doi.org/10.1016/j.matpr.2021.06.349.
  145. Tobbala, D.E. (2019), "Effect of Nano-ferrite addition on mechanical properties and gamma ray attenuation coefficient of steel fiber reinforced heavy weight concrete", Construct. Build. Mater., 207, 48-58. https://doi.org/10.1016/j.conbuildmat.2019.02.099.
  146. Tobbala, D.E. (2021), "Comparative study on the durability of nano-silica and nano-ferrite concrete", East African Scholars J. Eng. Comput. Sci., 4(9), 124-131.
  147. Vinothini, K., Elanova, R. and Vinoth, R. (2018), "Experimental investigation on strengthening of concrete by partial replacement of nano and micro silica", Int. J. Civil Eng. Technol., 9(7), 422-429.
  148. Wang, K., He, C., Zhang, X., Liu, Y. and Fan, Y. (2021), "Mechanical properties of high-strength concrete reinforced by multi-walled carbon nanotubes", J. Build. Eng., 43, 102547.
  149. Wang, M., Yang, X. and Wang, W. (2022), "Establishing a 3D aggregates database from X-ray CT scans of bulk concrete", Construct. Build. Mater., 315, 125740. https://doi.org/10.1016/j.conbuildmat.2021.125740.
  150. Wang, X.S., Dong, S., Ashour, A., Zhang, W. and Han, B. (2020), "Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars", Construct. Build. Mater., 240, 17942. https://doi.org/10.1016/j.conbuildmat.2019.117942.
  151. Wani, H.A., Singh, S. and Bhat, T.M. (2020). "Effect of nano titanium dioxide and GGBS on flexural behaviour of concrete beam", Int. Res. J. Modern Eng. Technol. Sci., 2, 1.
  152. Wu, Y.-Y., Que, L., Cui, Z. and Lambert, P. (2019), "Physical properties of concrete containing graphene oxide nanosheets", Materials, 12(10), 1707. https://10.3390/ma12101707
  153. Wu, Z., Shi, C., Khayat, K.H. and Wan, S. (2016), "Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC)", Cement Concrete Compos., 70, 24-34. https://doi.org/10.1016/j.cemconcomp.2016.03.003.
  154. Xiao, H.F., Zhang, F., Liu, R., Zhang, R., Liu, Z. and Liu, H. (2019), "Effects of pozzolanic and non-pozzolanic nanomaterials on cement-based materials" Construct. Build. Mater., 213, 1-9. https://doi.org/10.1016/j.conbuildmat.2019.04.057.
  155. Xiong, Y.Y., Zhu, Y., Chen C. and Zhang, Y. (2021), "Effect of nano-alumina modified foaming agents on properties of foamed concrete", Construct. Build. Mater., 267, 121045. https://doi.org/10.1016/j.conbuildmat.2020.121045.
  156. Yong-cun, Z. (2020), "Mechanical properties of modified concrete based on nano-silicon dioxide", Integrated Ferroelectrics, 207(1), 37-48. https://doi.org/10.1080/10584587.2020.1728663
  157. Younus, S.J., Mosaberpanah, M.A. and Alzeebaree, R. (2023), "The Performance of Alkali-Activated Self-Compacting Concrete with and without Nano-Alumina", Sustainability, 15(3), 2811. https://doi.org/10.3390/su15032811.
  158. Zaid, O.S., Hashmi, S.R.Z., Aslam, F., Abedin, Z.U. and Ullah, A. (2022), "Experimental study on the properties improvement of hybrid graphene oxide fiber-reinforced composite concrete", Diamond Related Mater., 124, 108883. https://doi.org/10.1016/j.diamond.2022.108883.
  159. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct, 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
  160. Zhang, C., Khorshidi, H., Najafi, E. and Ghasemi, M. (2023). "Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review", J. Cleaner Product., 384, 135390. https://doi.org/10.1016/j.jclepro.2022.135390.
  161. Zhang, W., Kang, S., Liu, X., Lin, B. and Huang, Y. (2023). "Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate", J. Build. Eng., 71, 06522. https://doi.org/10.1016/j.jobe.2023.106522.
  162. Zhao, Z., Qi, T., Zhou, W., Hui, D., Xiao, C., Qi, J., Zheng, Z. and Zhao, Z. (2020), "A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials", Nanotechnol. Rev., 9(1), 303-322. https://doi.org/10.1515/ntrev-2020-0023
  163. Zhou, S., Lu, C., Zhu, X. and Li, F. (2021), "Preparation and characterization of high-strength geopolymer based on BH-1 lunar soil simulant with low alkali content", Engineering, 7(11), 1631-1645. https://doi.org/10.1016/j.eng.2020.10.016.