• Title/Summary/Keyword: nanodiamond particles

Search Result 10, Processing Time 0.02 seconds

Effect of Lubricant with Nanodiamond Particles in Sliding Friction

  • Adzaman, M.H.;Rahman, A.;Lee, Y.Z.;Kim, S.S.
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.183-188
    • /
    • 2015
  • This paper presents the experimental effects of lubricant with nanodiamond particles in sliding friction. In order to improve the performance of lubricants many additives are used, such as MoS2, cadmium chloride, indium, sulfides, and phosphides. These additives are harmful to human health and to the environment, so alternatives are necessary. One such alternative is nanodiamond powder, which has a large surface area. In order to investigate the effect of nanodiamonds in lubricants under sliding friction, they are dispersed in the lubricant at a variety of concentrations (0 wt%, 0.1 wt%, 0.3 wt%, 0.5 wt%, and 1 wt%) using the matrix synthesis method. Friction and wear tests are performed according to the ASTM G99 method using a pin-on-disc tester at room temperature. The specimens used in this experiment are AISI 52100 ball bearings and AISI 1020 steel discs. During the test, lubricant mixed with nanodiamond is supplied constantly to keep the two bodies separated by a lubricant film. To maintain boundary lubrication, the speed is set to 0.18 m/s and a load of 294 N is applied to the disc through the pin. Results are recorded by using workbench software over the test duration of 10 minutes. Experimental results show that when the concentration of nanodiamond increases, the coefficient of friction decreases. However, above a nanodiamond concentration of 0.5 wt%, both the coefficient of friction and wear volume increase. From this experiment, the optimum concentration of nanodiamond showing a minimum coefficient of friction of 0.09 and minimum wear volume of 0.82 nm2 was 0.5 wt%.

Comparison of Chemicophysics Properties of the Detonation Monocrystalline and Synthetic Polycrystalline Nanodiamond (폭발 단결정과 합성 다결정 나노다이아몬드의 물리화학적 특성 비교)

  • Kang, Soon-Kook;Chung, Myung-Kiu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4689-4695
    • /
    • 2011
  • Nanodiamond is a relatively new nanomaterial with broad prospects for application. In this paper, a variety of methods were used to analyze comprehensively chemicophysics properties of the detonation monocrystalline and synthetic polycrystalline nanodiamond, XRD spectroscopy, EDS, HRTEM, FTIR, Raman spectroscopy, TGA-DTA and BET. The results show that the monocryctalline detonation nanodiamond particles are spherical or elliptical shape of 4nm ~ 6nm grain size and the polycryctalline synthetic nanodiamond particles are angular shape of 80nm ~ 120nm grain size. The surface of the monocrystalline and polycrystalline nanodiamond contain hydroxy, carbonyl, carboxyl, ether-based resin, and other functional groups. The phase transition temperature of the monocrystalline detonation nanodiamond in the $N_2$ is about $650^{\circ}C$.

Effect of hydrogenation surface modification on dispersion and nucleation density of nanodiamond seed particle (수소화 표면 개질이 나노다이아몬드 seed 입자의 분산 및 핵형성 밀도에 미치는 영향)

  • Choi, Byoung Su;Jeon, Hee Sung;Um, Ji Hun;Hwang, Sungu;Kim, Jin Kon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.239-244
    • /
    • 2019
  • Two hydrogenation surface modifications, namely hydrogen atmosphere heat treatment and hydrogen plasma treatment, were found to lead to improved dispersion of nanodiamond (ND) seed particles and enhanced nucleation density for deposition of smooth ultrananocrystalline diamond (UNCD) film. After hydrogenation, the C-O and O-H surface functionalities on the surface of nanodiamond particles were converted to the C-H surface functionalities, and the Zeta potential was increased. As the degree of dispersion was improved, the size of nanodiamond aggregates decreased significantly and nucleation density increased dramatically. After hydrogen heat treatment at 600℃, average size of ND particles was greatly reduced from 3.5 ㎛ to 34.5 nm and a very high nucleation of ~3.9 × 1011 nuclei/㎠ was obtained for the seeded Si surface.

Study on Wear Characteristics of Lubricants with Nano-diamond Additives (나노다이아몬드가 첨가된 윤활제의 마모 특성 연구)

  • Kim, Seung Taek;Kim, Seung Mok;Park, Tae Hee;Lee, JungSeok;Lee, YoungZe
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.291-294
    • /
    • 2014
  • Multiple additives can help improve the performance of generally used lubricants. These additives include MoS2, cadmium, chloride, indium, sulfide, and phosphide, which are harmful to both humans and the environment. Thus, researchers in this industry have been trying to reduce the use of these additives by finding alternatives. Nanodiamonds are one of these candidates. Nanodiamond particles are very hard, chemically stable, and highly heat-conductive. This research involved uniformly dispersing nanodiamond particles in marine engine oils via a matrix synthesis method at various concentrations (0, 0.1, 0.3, 0.5, and 1.0 wt). Friction and wear tests involved constant loads on ball-on-disk specimens, where the ball was AISI 51200 steel, the disk was AISI 1020 steel, and the sliding speed was 0.217 m/s. The lowest wear occurred at a suitable concentration of nanodiamonds (0.3 wt). However, excessive amounts of nanodiamonds caused them to act as abrasive debris because of their hardness, which increased the wear amount. The friction coefficient decreased as the nanodiamond concentration increased because their octagonal, almost spherical shape caused them to act as rolling contact elements between two surfaces.

Dispersion Behavior and Size Analysis of Thermally Purified High Pressure-high Temperature Synthesized Nanodiamond Particles

  • Kwon, Hansang;Park, Jehong;Leparoux, Marc
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.216-222
    • /
    • 2017
  • Synthesized monocrystalline nanodiamond (nD) particles are heat-treated at various temperatures to produce highly structured diamond crystals. The heat-treated nDs show different weight loss ratios during thermogravimetric analysis. The crystallinities of the heat-treated nDs are analyzed using Raman spectroscopy. The average particle sizes of the heat-treated nDs are measured by a dynamic light scattering (DLS) system and direct imaging observation methods. Moreover, individual dispersion behaviors of the heat-treated nD particles are investigated based on ultrasonic dispersion methods. The average particle sizes of the dispersed nDs according to the two different measurement methods show very similar size distributions. Thus, it is possible to produce highly crystallized nD powder particles by a heat-treatment process, and the nD particles are relatively easy to disperse individually without any dispersant. The heat-treated nDs can lead to potential applications such as in nanocomposites, quantum dots, and biomedical materials.

Enhanced nucleation density by heat treatment of nanodiamond seed particles (나노다이아몬드 seed 입자의 열처리에 의한 핵형성 밀도 향상)

  • Park, Jong Cheon;Jeong, Ok Geun;Son, Bit Na;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.291-295
    • /
    • 2013
  • Surface chemical modification via air and hydrogen heat treatment was found to relieve the aggregation of nanodiamond (ND) seed particles and lead to a significantly enhanced nucleation density for ultrananocrystalline diamond (UNCD) film growth. After heat treatment in air and hydrogen, modification of surface functionalities and increase in the zeta potential were observed. Mean size of the ND aggregates was also dramatically reduced from ${\sim}2{\mu}m$ to ~55 nm. Si surface seeded with ND particles heat-treated at $600^{\circ}C$ in hydrogen produced a much higher nucleation density of ${\sim}2.7{\times}10^{11}cm^{-2}$ compared to untreated ND seeds.

Effect of Carbon-based Nanofillers on the Toughening Behavior of Epoxy Resin

  • Lee, Gi-Bbeum;Kim, Haeran;Shin, Wonjae;Jeon, Jinseok;Park, In-Seok;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.179-186
    • /
    • 2021
  • Carbon-based nanofillers, including nanodiamond (ND) and carbon nanotubes (CNTs), have been employed in epoxy matrixes for improving the toughness, using the tow prepreg method, of epoxy compounds for high pressure tanks. The reinforcing performance was compared with those of commercially available toughening fillers, including carboxyl-terminated butadiene acrylonitrile (CTBN) and block copolymers, such as poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate) (BA-b-MMA). CTNB improved the mechanical performance at a relatively high filler loading of ~5 phr. Nanosized BA-b-MMA showed improved performance at a lower filler loading of ~2 phr. However, the mechanical properties deteriorated at a higher loading of ~5 phr because of the formation of larger aggregates. ND showed no significant improvement in mechanical properties because of aggregate formation. In contrast, surface-treated ND with epoxidized hydroxyl-terminated polybutadiene considerably improved the mechanical properties, notably the impact strength, because of more uniform dispersion of particles in the epoxy matrix. CNTs noticeably improved the flexural strength and impact strength at a filler loading of 0.5 phr. However, the improvements were lost with further addition of fillers because of CNT aggregation.

Development of New Surfaces and Materials for Separation Science

  • Linford, Matthew R.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.59.1-59.1
    • /
    • 2015
  • In the Linford group at Brigham Young University we have recently developed three new sets of materials for three different areas of separations science: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and solid phase microextraction (SPME). First, via microfabrication we have grown patterned carbon nanotube (CNT) forests on planar substrates that we have infiltrated with inorganic materials such as silicon nitride. The coatings on the CNTs are conformal and typically deposited in a process like low pressure chemical vapor deposition. The resulting materials have high surface areas, are porous, and function as effective separation devices, where separations on our new TLC plates are typically significantly faster than on conventional devices. Second, we used the layer-by-layer (electrostatically driven) deposition of poly (allylamine) and nanodiamond onto carbonized poly (divinylbenzene) microspheres to create superficially porous particles for HPLC. Many interesting classes of molecules have been separated with these particles, including various cannabinoids, pesticides, tricyclic antidepressants, etc. Third, we have developed new materials for SPME by sputtering silicon onto cylindrical fiber substrates in a way that creates shadowing of the incoming flux so that materials with high porosity are obtained. These materials are currently outperforming their commercial counterparts. Throughout this work, the new materials we have made have been characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, transmission electron microscopy, etc.

  • PDF

Numerical Analysis of Thermal Characteristics of a Milling Process of Titanium Alloy Using Nanofluid Minimum-Quantity Lubrication (티타늄 합금의 나노유체 극미량 윤활 밀링 공정 열특성에 관한 수치 해석 연구)

  • Kim, Young Chang;Kim, Jin Woo;Kim, Jung Sub;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.253-258
    • /
    • 2017
  • This paper presents a numerical study on the thermal characteristics of a milling process of titanium alloy with nanofluid minimum-quantity lubrication (MQL). The computational fluid dynamics (CFD) approach is introduced for establishing the numerical model for the nanofluid MQL milling process, and estimated temperatures for pure MQL and for nanofluid MQL using both hexagonal boron nitride (hBN) and nanodiamond particles are compared with the temperatures measured by thermocouples in the titanium alloy workpiece. The estimated workpiece temperatures are similar to experimental ones, and the model is validated.

Characteristics of a Polycrystalline Diamond Thin Film Deposited on a-plane Sapphire Substrate (a-plane 사파이어기판에 증착된 Polycrystalline Diamond 박막의 특성)

  • Tan, Xing Yan;Jang, Tae Hwan;Kwon, Jin Uk;Kim, Tae Gyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.3
    • /
    • pp.109-115
    • /
    • 2020
  • In this study, polycrystalline diamond was synthesized by chemical vapor deposition (CVD). Diamond films were deposited on a-plane sapphire substrates while changing the concentration of methane for hydrogen (CH4/H2), and the concentrations of methane were 0.25, 0.5, 1, 2, 3 and 4 vol%, respectively. Crystallinity and nucleation density according to changes in methane concentration were investigated. At this time, the discharge power, vacuum pressure, and deposition time were kept constant. In order to deposit polycrystalline diamond, the sapphire substrate was etched with sulfuric acid and hydrogen peroxide (ratio 3:7), and the sapphire surface was polished for 30 minutes with 100 nm-sized nanodiamond particles. The deposited diamond thin film was analyzed by a scanning electron microscope (SEM), a Raman spectra, Atomic force microscope (AFM) and an X-ray diffractometer (XRD). By controlling the ratio of methane to hydrogen and performing appropriate pre-treatment conditions, a polycrystalline diamond thin film having excellent crystallinity and nucleation density was obtained.