Browse > Article
http://dx.doi.org/10.7473/EC.2021.56.3.179

Effect of Carbon-based Nanofillers on the Toughening Behavior of Epoxy Resin  

Lee, Gi-Bbeum (Department of Polymer-Nano Science and Technology and Bionanotechnology and Bioconversence Engineering, Jeonbuk National University)
Kim, Haeran (Department of Polymer-Nano Science and Technology and Bionanotechnology and Bioconversence Engineering, Jeonbuk National University)
Shin, Wonjae (Department of Polymer-Nano Science and Technology and Bionanotechnology and Bioconversence Engineering, Jeonbuk National University)
Jeon, Jinseok (Department of Polymer-Nano Science and Technology and Bionanotechnology and Bioconversence Engineering, Jeonbuk National University)
Park, In-Seok (Department of Polymer-Nano Science and Technology and Bionanotechnology and Bioconversence Engineering, Jeonbuk National University)
Nah, Changwoon (Department of Polymer-Nano Science and Technology and Bionanotechnology and Bioconversence Engineering, Jeonbuk National University)
Publication Information
Elastomers and Composites / v.56, no.3, 2021 , pp. 179-186 More about this Journal
Abstract
Carbon-based nanofillers, including nanodiamond (ND) and carbon nanotubes (CNTs), have been employed in epoxy matrixes for improving the toughness, using the tow prepreg method, of epoxy compounds for high pressure tanks. The reinforcing performance was compared with those of commercially available toughening fillers, including carboxyl-terminated butadiene acrylonitrile (CTBN) and block copolymers, such as poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate) (BA-b-MMA). CTNB improved the mechanical performance at a relatively high filler loading of ~5 phr. Nanosized BA-b-MMA showed improved performance at a lower filler loading of ~2 phr. However, the mechanical properties deteriorated at a higher loading of ~5 phr because of the formation of larger aggregates. ND showed no significant improvement in mechanical properties because of aggregate formation. In contrast, surface-treated ND with epoxidized hydroxyl-terminated polybutadiene considerably improved the mechanical properties, notably the impact strength, because of more uniform dispersion of particles in the epoxy matrix. CNTs noticeably improved the flexural strength and impact strength at a filler loading of 0.5 phr. However, the improvements were lost with further addition of fillers because of CNT aggregation.
Keywords
epoxy resin; CTBN; block copolymer; nanodiamond; carbon nanotube;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. M. Park, T. K. Hwang, S. Chung, N. Park, J. Y. Jang, and C. Nah, "Recent Research Trends in Carbon Fiber Tow Prepreg for Advanced Composites", J. Korean Soc. Propuls. Eng., 21, 94 (2017).   DOI
2 A. R. Sobia, A. Naveed, A. H. Yasir, A. Fakhre, A. K. Aqeel, and M. Arshad, "Comparison of Mechanical Properties of Acid and UV Ozone Treated Nanodiamond Epoxy Nanocomposites", J. Mater. Sci. Technol., 30, 753 (2014).   DOI
3 R. Thomas, S. Durix, C. Sinturel, T. Omonov, S. Goossens, G. Groeninckx, P. Moldenaers, and S. Thomas, "Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin e Effects of a liquid rubber inclusion", Polymer, 48, 1695 (2007).   DOI
4 K. Dinakaran, M. Alagar, and R. Suresh Kumar, "Preparation and characterization of bismaleimide/1,3-dicyanatobenzene modified epoxy intercrosslinked matrices", Eur. Polym. J., 39, 2225 (2003).   DOI
5 P. M. Lipic, F. S. Bates, and M. A. Hillmyer, "Nanostructured Thermosets from Self-Assembled Amphiphilic Block Copolymer/Epoxy Resin Mixtures", J. Am. Chem. Soc., 120, 8963 (1998).   DOI
6 J. M. Dean, R. B. Grubbs, W. Saad, R. F. Cook, and F. S. Bates, "Mechanical Properties of Block Copolymer Vesicle and Micelle Modified Epoxies", J. Polym. Sci. B Polym. Phys., 41, 2444 (2003).   DOI
7 L. Tao, Z. Sun, W. Min, H. Ou, L. Qi, and M. Yu, "Improving the toughness of thermosetting epoxy resins via blending triblock copolymers", RSC Adv., 10, 1603 (2020).   DOI
8 G.-X. Chen, H.-S. Kim, B. H. Park, and J.-S. Yoon, "Multi-walled carbon nanotubes reinforced nylon 6 composites", Polymer, 47, 4760 (2006).   DOI
9 J. S. Park, I. H. Cho, C. U. Kim, S. H. Oh, C. S. Hong, and C. G. Kim, "Structural Analysis and Strain Monitoring of the Filament Wound Composite Motor Case used in KSR - III Rocket", Compos. Res., 14, 24 (2001).
10 S. R. Swanson and G. R. Toombes, "Characterization of Prepreg Tow Carbon/Epoxy Laminates", J. Eng. Mater. Technol., 111, 150 (1989).   DOI
11 D. Ratna and K. Banthia Ajit, "Rubber toughened epoxy", Macromol. Res., 12, 11 (2004).   DOI
12 C. W. Wise, W. D. Cook, and A. A. Goodwin, "CTBN rubber phase precipitation in model epoxy resins", Polymer, 41, 4625 (2000).   DOI
13 H. Kishi, Y. Kunimitsu, Y. Nakashima, J. Imade, S. Oshita, Y. Morishita, and M. Asada, "Relationship between the mechanical properties of epoxy/PMMA-b-PnBA-b-PMMA block copolymer blends and their three-dimensional nanostructures", EXPRESS Polym. Lett., 11, 765 (2017).   DOI
14 A. J. Kinloch, S. J. Shaw, D. A. Tod, and D. L. Hunston, "Deformation and fracture behavior of a rubber-toughened epoxy: 1. Microstructure and fracture studies", Polymer, 24, 1341 (1983).   DOI
15 J.-M. Chu, E.-K. Lee, and S.-Y. Choi, "Influences of Liquid Rubber on the Surfacial and Mechanical Properties of Epoxy Composites", Elastomer, 43, 113 (2008).
16 H. Jin, B. Yang, F.-L. Jin, and S.-J. Park, "Fracture toughness and surface morphology of polysulfone-modified epoxy resin", J. Ind. Eng. Chem., 25, 9 (2015).   DOI
17 F. H. Gojny and K. Schulte, "Functionalisation effect on the thermo-mechanical behavior of multi-wall carbon nanotube/epoxy-composites", Compos. Sci. Technol., 64, 2303 (2004).   DOI
18 T. Wang, B. Song, K. Qiao, Y. Huang, and L. Wang, "Effect of Dimensions and Agglomerations of Carbon Nanotubes on Synchronous Enhancement of Mechanical and Damping Properties of Epoxy Nanocomposites", Nanomaterials, 8, 996 (2018).   DOI
19 F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites - A comparative study", Compos. Sci. Technol., 65, 2300 (2005).   DOI
20 이백행, 이호길, "수소전기차용 수소저장용기 기술동향", KEIT PD Issue Report, 20, 49 (2020).
21 J.-H. Lee, G.-H. Yoo, and S.-B. Heo, "High Pressure Hydrogen Gas Cylinder for Fuel Cell Vehicle and Station", Theories and Applications of Chem. Eng., 10, 1108 (2004).
22 S. Khostavan, M. Fazli, M. G. Ahangari, and Y. Rostamiyan, "The Effect of Interaction between Nanofillers and Epoxy on Mechanical and Thermal Properties of Nanocomposites: Theoretical Prediction and Experimental Analysis", Adv. Polym. Technol., 2019, 8156718 (2019).
23 Y. M. Park, S. K. Chung, Y. J. Yoon, Y. J. Jung, S. W. Bae, M. Y. Huh, H. S. Lee, and Choi, D. H., "Preliminary Study on the Production of Hot-Melt Epoxy Applied Carbon Fiber Towpreg by 3-Roll Coater", in Proceedings of 2015 KSPE Fall Conference, Gyeong-ju, Korea, Nov. 2015, p.928-932.