DOI QR코드

DOI QR Code

Effect of Carbon-based Nanofillers on the Toughening Behavior of Epoxy Resin

  • Lee, Gi-Bbeum (Department of Polymer-Nano Science and Technology and Bionanotechnology and Bioconversence Engineering, Jeonbuk National University) ;
  • Kim, Haeran (Department of Polymer-Nano Science and Technology and Bionanotechnology and Bioconversence Engineering, Jeonbuk National University) ;
  • Shin, Wonjae (Department of Polymer-Nano Science and Technology and Bionanotechnology and Bioconversence Engineering, Jeonbuk National University) ;
  • Jeon, Jinseok (Department of Polymer-Nano Science and Technology and Bionanotechnology and Bioconversence Engineering, Jeonbuk National University) ;
  • Park, In-Seok (Department of Polymer-Nano Science and Technology and Bionanotechnology and Bioconversence Engineering, Jeonbuk National University) ;
  • Nah, Changwoon (Department of Polymer-Nano Science and Technology and Bionanotechnology and Bioconversence Engineering, Jeonbuk National University)
  • Received : 2021.09.09
  • Accepted : 2021.09.17
  • Published : 2021.09.30

Abstract

Carbon-based nanofillers, including nanodiamond (ND) and carbon nanotubes (CNTs), have been employed in epoxy matrixes for improving the toughness, using the tow prepreg method, of epoxy compounds for high pressure tanks. The reinforcing performance was compared with those of commercially available toughening fillers, including carboxyl-terminated butadiene acrylonitrile (CTBN) and block copolymers, such as poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate) (BA-b-MMA). CTNB improved the mechanical performance at a relatively high filler loading of ~5 phr. Nanosized BA-b-MMA showed improved performance at a lower filler loading of ~2 phr. However, the mechanical properties deteriorated at a higher loading of ~5 phr because of the formation of larger aggregates. ND showed no significant improvement in mechanical properties because of aggregate formation. In contrast, surface-treated ND with epoxidized hydroxyl-terminated polybutadiene considerably improved the mechanical properties, notably the impact strength, because of more uniform dispersion of particles in the epoxy matrix. CNTs noticeably improved the flexural strength and impact strength at a filler loading of 0.5 phr. However, the improvements were lost with further addition of fillers because of CNT aggregation.

Keywords

Acknowledgement

본 연구는 한국산업기술평가관리원(KEIT)의 연구비 지원을 받는 산업기술혁신사업(과제번호 20010851)을 통해 수행되었으며, 이에 감사드립니다.

References

  1. 이백행, 이호길, "수소전기차용 수소저장용기 기술동향", KEIT PD Issue Report, 20, 49 (2020).
  2. J.-H. Lee, G.-H. Yoo, and S.-B. Heo, "High Pressure Hydrogen Gas Cylinder for Fuel Cell Vehicle and Station", Theories and Applications of Chem. Eng., 10, 1108 (2004).
  3. Y. M. Park, T. K. Hwang, S. Chung, N. Park, J. Y. Jang, and C. Nah, "Recent Research Trends in Carbon Fiber Tow Prepreg for Advanced Composites", J. Korean Soc. Propuls. Eng., 21, 94 (2017). https://doi.org/10.6108/KSPE.2017.21.2.094
  4. J. S. Park, I. H. Cho, C. U. Kim, S. H. Oh, C. S. Hong, and C. G. Kim, "Structural Analysis and Strain Monitoring of the Filament Wound Composite Motor Case used in KSR - III Rocket", Compos. Res., 14, 24 (2001).
  5. Y. M. Park, S. K. Chung, Y. J. Yoon, Y. J. Jung, S. W. Bae, M. Y. Huh, H. S. Lee, and Choi, D. H., "Preliminary Study on the Production of Hot-Melt Epoxy Applied Carbon Fiber Towpreg by 3-Roll Coater", in Proceedings of 2015 KSPE Fall Conference, Gyeong-ju, Korea, Nov. 2015, p.928-932.
  6. S. R. Swanson and G. R. Toombes, "Characterization of Prepreg Tow Carbon/Epoxy Laminates", J. Eng. Mater. Technol., 111, 150 (1989). https://doi.org/10.1115/1.3226447
  7. A. J. Kinloch, S. J. Shaw, D. A. Tod, and D. L. Hunston, "Deformation and fracture behavior of a rubber-toughened epoxy: 1. Microstructure and fracture studies", Polymer, 24, 1341 (1983). https://doi.org/10.1016/0032-3861(83)90070-8
  8. D. Ratna and K. Banthia Ajit, "Rubber toughened epoxy", Macromol. Res., 12, 11 (2004). https://doi.org/10.1007/BF03218989
  9. C. W. Wise, W. D. Cook, and A. A. Goodwin, "CTBN rubber phase precipitation in model epoxy resins", Polymer, 41, 4625 (2000). https://doi.org/10.1016/S0032-3861(99)00686-2
  10. J.-M. Chu, E.-K. Lee, and S.-Y. Choi, "Influences of Liquid Rubber on the Surfacial and Mechanical Properties of Epoxy Composites", Elastomer, 43, 113 (2008).
  11. A. R. Sobia, A. Naveed, A. H. Yasir, A. Fakhre, A. K. Aqeel, and M. Arshad, "Comparison of Mechanical Properties of Acid and UV Ozone Treated Nanodiamond Epoxy Nanocomposites", J. Mater. Sci. Technol., 30, 753 (2014). https://doi.org/10.1016/j.jmst.2013.12.011
  12. S. Khostavan, M. Fazli, M. G. Ahangari, and Y. Rostamiyan, "The Effect of Interaction between Nanofillers and Epoxy on Mechanical and Thermal Properties of Nanocomposites: Theoretical Prediction and Experimental Analysis", Adv. Polym. Technol., 2019, 8156718 (2019).
  13. R. Thomas, S. Durix, C. Sinturel, T. Omonov, S. Goossens, G. Groeninckx, P. Moldenaers, and S. Thomas, "Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin e Effects of a liquid rubber inclusion", Polymer, 48, 1695 (2007). https://doi.org/10.1016/j.polymer.2007.01.018
  14. K. Dinakaran, M. Alagar, and R. Suresh Kumar, "Preparation and characterization of bismaleimide/1,3-dicyanatobenzene modified epoxy intercrosslinked matrices", Eur. Polym. J., 39, 2225 (2003). https://doi.org/10.1016/S0014-3057(03)00151-4
  15. H. Jin, B. Yang, F.-L. Jin, and S.-J. Park, "Fracture toughness and surface morphology of polysulfone-modified epoxy resin", J. Ind. Eng. Chem., 25, 9 (2015). https://doi.org/10.1016/j.jiec.2014.10.032
  16. P. M. Lipic, F. S. Bates, and M. A. Hillmyer, "Nanostructured Thermosets from Self-Assembled Amphiphilic Block Copolymer/Epoxy Resin Mixtures", J. Am. Chem. Soc., 120, 8963 (1998). https://doi.org/10.1021/ja981544s
  17. J. M. Dean, R. B. Grubbs, W. Saad, R. F. Cook, and F. S. Bates, "Mechanical Properties of Block Copolymer Vesicle and Micelle Modified Epoxies", J. Polym. Sci. B Polym. Phys., 41, 2444 (2003). https://doi.org/10.1002/polb.10595
  18. H. Kishi, Y. Kunimitsu, Y. Nakashima, J. Imade, S. Oshita, Y. Morishita, and M. Asada, "Relationship between the mechanical properties of epoxy/PMMA-b-PnBA-b-PMMA block copolymer blends and their three-dimensional nanostructures", EXPRESS Polym. Lett., 11, 765 (2017). https://doi.org/10.3144/expresspolymlett.2017.74
  19. L. Tao, Z. Sun, W. Min, H. Ou, L. Qi, and M. Yu, "Improving the toughness of thermosetting epoxy resins via blending triblock copolymers", RSC Adv., 10, 1603 (2020). https://doi.org/10.1039/C9RA09183A
  20. G.-X. Chen, H.-S. Kim, B. H. Park, and J.-S. Yoon, "Multi-walled carbon nanotubes reinforced nylon 6 composites", Polymer, 47, 4760 (2006). https://doi.org/10.1016/j.polymer.2006.04.020
  21. F. H. Gojny and K. Schulte, "Functionalisation effect on the thermo-mechanical behavior of multi-wall carbon nanotube/epoxy-composites", Compos. Sci. Technol., 64, 2303 (2004). https://doi.org/10.1016/j.compscitech.2004.01.024
  22. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites - A comparative study", Compos. Sci. Technol., 65, 2300 (2005). https://doi.org/10.1016/j.compscitech.2005.04.021
  23. T. Wang, B. Song, K. Qiao, Y. Huang, and L. Wang, "Effect of Dimensions and Agglomerations of Carbon Nanotubes on Synchronous Enhancement of Mechanical and Damping Properties of Epoxy Nanocomposites", Nanomaterials, 8, 996 (2018). https://doi.org/10.3390/nano8120996