Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.3.216

Dispersion Behavior and Size Analysis of Thermally Purified High Pressure-high Temperature Synthesized Nanodiamond Particles  

Kwon, Hansang (Department of materials system engineering, Pukyoung National University)
Park, Jehong (Department of R&D, Next Generation Materials Co., Ltd)
Leparoux, Marc (Laboratory of Advanced Materials Processing, EMPA-Swiss federal laboratories for materials science and technology)
Publication Information
Journal of Powder Materials / v.24, no.3, 2017 , pp. 216-222 More about this Journal
Abstract
Synthesized monocrystalline nanodiamond (nD) particles are heat-treated at various temperatures to produce highly structured diamond crystals. The heat-treated nDs show different weight loss ratios during thermogravimetric analysis. The crystallinities of the heat-treated nDs are analyzed using Raman spectroscopy. The average particle sizes of the heat-treated nDs are measured by a dynamic light scattering (DLS) system and direct imaging observation methods. Moreover, individual dispersion behaviors of the heat-treated nD particles are investigated based on ultrasonic dispersion methods. The average particle sizes of the dispersed nDs according to the two different measurement methods show very similar size distributions. Thus, it is possible to produce highly crystallized nD powder particles by a heat-treatment process, and the nD particles are relatively easy to disperse individually without any dispersant. The heat-treated nDs can lead to potential applications such as in nanocomposites, quantum dots, and biomedical materials.
Keywords
Nanodiamonds (nD); High-pressure high-temperature (HPHT); Electrostatic dispersion; Ultrasonic dispersion; Heat treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Stehlik, M. Varga, M. Ledinsky, V. Jirasek, A. Artemenko, H. Kozak, L. Ondic, V. Skakalova, G. Argentero, T. Pennycook, J. C. Meyer, A. Feifar, A. Kromka and B. Rezek: J. Phys. Chem. C, 119 (2015) 27708.   DOI
2 S. Stehlik, M. Varga, M. Ledinsky, D. Miliaieva, H. Kozak, V. Skakalova, C. Mangler, T. J. Pennycook, J. C. Meyer, A. Kromka and B. Rezek: Sci. Rep., 6 (2016) 38419.   DOI
3 O. Shenderova, I. Petrov, J. Walsh, V. Grichko, V. Grishko, T. Tyler and G. Cunningham: Diam. Relat. Mater., 15 (2006) 1799.   DOI
4 V. Pichot, M. Comet, E. Fousson, C. Baras, A. Senger, F. Le Normand and D. Spitzer: Diam. Relat. Mater., 17 (2008) 13.   DOI
5 A. Wolcott, T. Schiros, M.E. Trusheim, E.H. Chen, D. Nordlund, R. E. Diaz, O. Gaathon, D. Englund and J. S. Owen: J. Phys. Chem. C, 118 (2014) 26695.   DOI
6 J. Havlik, V. Petrakova, I. Rehor, V. Petrak, M. Gulka, J. Stursa, J. Kucka, J. Ralis, T. Rendlerf, S. Y. Lee, R. Reuter, J. Wrachtrup, M. Ledvina, M. Nesladek and P. Cigler: Nanoscale, 5 (2013) 3208.   DOI
7 V. N. Mochalin and Y. Gogotsi: Diam. Relat. Mater., 58 (2015) 161.   DOI
8 Reishauer, Downloadcenter, http://rmnt.reishauer.com/en/welcome/downloadcenter.
9 Y. K. Bahk, J. Buha and J. Wang: Aerosol. Sci. Tech., 47 (2013) 776.   DOI
10 H. G. Schmid, M. Dvorak, G. Buerki, M. Leparoux, S. Siegmann and C. Schreuders: PARTEC Int. Congress for Particle Technology, 26 (2004) 16.
11 C. Xu, X. Cai, J. Zhang and L. Liu: Particuology, 19 (2015) 82.   DOI
12 S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev and Y. Gogotsi: J. Am. Chem. Soc., 128 (2006) 11635.   DOI
13 A. Niederhofer, P. Nesladek, H. D. Mannling, K. Moto, S. Veprek and M. Jilek: Surf. Coat. Technol., 120-121 (1999) 173.   DOI
14 H. Kwon, S. Kim, B. Lee, W. Seo and M. Laparoux: Mater. Sci. Eng. A, 632 (2015) 72.   DOI
15 E. Duffy, D. P. Mitev, S. C. Thickett, A. T. Townsend, B. Paul and P. N. Nesterenkon: Appl. Surf. Sci., 357 (2015) 397.   DOI
16 X. Zhang, J. Yin, C. Kang, J. Li, Y. Zhu, W. Li, Q. Huang and Z. Zhu: Toxicol. Lett., 198 (2010) 237.   DOI
17 V. V. Danilenko: Phys. Solid State, 46 (2004) 595.   DOI
18 V. Pichot, B. Risse, F. Schnell, J. Mory and D. Spitzer: Sci. Rep., 3 (2013) 02159.   DOI
19 A.R. Kirmani, W. Peng, R. Mahfouz, A. Amassian, Y. Losovyj, H. Idriss and K. Katsiev: Carbon, 94 (2015) 79.   DOI
20 G. W. Yang, J. B. Wang and Q. X. Liu: J. Phys. Condens. Matter, 10 (1998) 7926.
21 J. P. Boudou, P. A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel and E. Gaffet: Nanotechnology, 20 (2009) 235602.   DOI
22 T. L. Daulton, M. A. Kirk, R. S. Lewis and L. E. Rehn: Nucl. Instrum. Meth. B, 175 (2001) 12.
23 M. Frenklach, W. Howard, D. Huang, J. Yuan, K. E. Spear and R. Koba: Appl. Phys. Lett., 59 (1991) 546.   DOI
24 Y. Gogotsi, Klaus G. Nickel, D. Bahloul-Hourlier, T. Merle-Mejean, G. E. Khomenko and K. P. Skjerlie: J. Mater. Chem., 6 (1996) 595.   DOI
25 S. Welz, Y. Gogotsi and M. J. McNallan: J. Appl. Phys., 93 (2003) 4207.   DOI
26 F. Banhart and P. M. Ajayan: Nature, 382 (1996) 433.   DOI
27 E. M. Galimov, A. M. Kudin, V. N. Skorobogatskii, V. G. Plotnichenko, O. L. Bondarev, B. G. Zarubin, V. V. Strazdovskii, A. S. Aronin, A. V. Fisenko, I. V. Bykov and A. Yu. Barinov: Dokl. Phys., 49 (2004) 150.   DOI
28 V. N. Mochalin, I. Neitzel, B. J. M. Etzold, A. Peterson, G. Palmese and Y. Gogotsi: ACS Nano, 5 (2011) 7494.   DOI
29 H. Huang, E. Pierstorff, E. Osawa and D. Ho: Nano Lett., 11 (2007) 3305.
30 V. Grichko, T. Tyler, V. I. Grishko and O. Shenderova: Nanotechnology, 19 (2008) 225201.   DOI
31 T.Gaebel, C. Bradac, J. Chen, J. M. Say, L. Brown, P. Hemmer and J. R. Rabeau: Diam. Relat. Mater., 21 (2012) 28.   DOI
32 S. Osswald, M. Havel, V. Mochalin, G. Yushin and Y. Gogotsi: Diam. Relat. Mater., 17 (2008) 1122.   DOI
33 O. A. Williams, J. Hees, C. Dieker, W. Jager, L. Kirste and C. E. Nebel: ACS Nano, 8 (2010) 4824.