• Title/Summary/Keyword: nanocrystals (NCs)

Search Result 26, Processing Time 0.032 seconds

Synthesis of CdS Nanocrystals with Different Shapes via a Colloidal Method

  • Bai, Jie;Liu, Changsong;Niu, Jinzhong;Wang, Hongzhe;Xu, Shasha;Shen, Huaibin;Li, Lin Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.397-400
    • /
    • 2014
  • Size- and shape-controlled monodisperse wurtzite structured CdS nanorods have been successfully synthesized using a facile solution-based colloidal method. Depending on the control of injection/growth temperatures and the variation of Cd-to-S molar ratios, the morphology of the CdS nanocrystals (NCs) can be adjusted into bullet-like, rod-like, and dot-like shapes. X-ray diffraction (XRD), transition electron microscopy (TEM), and absorption spectroscopy were used to characterize the structure, morphology, and optical properties of as-synthesized CdS NCs. It was found that uniform CdS nanorods could be successfully synthesized when the injection and growth temperatures were very high (> $360^{\circ}C$). The aspect ratios of different shaped (bullet-like or rod-like) CdS NCs could be controlled by simply adjusting the molar ratios between Cd and S.

Synthesis of CuSbS2 and CuSbSe2 Nanocrystals by a Mechanochemical Method (기계화학적 방법에 의한 CuSbS2와 CuSbSe2 나노입자의 합성)

  • Park, Bo-In;Lee, Seung Yong;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.140-144
    • /
    • 2017
  • $CuSbS_2$ (CAS) and $CuSbSe_2$ (CASe) nanocrystals (NCs), which consist of earth-abundant elements, were synthesized by a mechanochemical method. Elemental precursors such as copper, antimony, sulfur, and selenium were used without adding any organic solvents or additives. The NCs were synthesized by milling for a few hours. The sudden phase changes occurred by self-ignition and propagation, as previously observed in other mechanochemical synthetic processes. The XRD, Raman, and TEM analysis were carried out to determine the crystallinity and secondary phase of the as-synthesized CAS and CASe NCs, confirming the phase-pure synthesis of CAS and CASe. Optical properties were investigated by UV-Vis spectroscopy and it was observed that the band gap energies were about 1.1 and 1.5 eV, respectively for CAS and CASe, suggesting the potential for the use as solar cell materials. The NC colloids dispersed in anhydrous ethanol were prepared and coated on Mo substrates by a facile doctor-blade method. The investigation on the solar cell properties of the as-synthesized materials is underway.

Improved Uniformity of Resistive Switching Characteristics in Ge0.5Se0.5-based ReRAM Device Using the Ag Nanocrystal (Ag Nanocrystal이 적용된 Ge0.5Se0.5-based ReRAM 소자의 Uniformity 특성 향상에 대한 연구)

  • Chung, Hong-Bay;Kim, Jang-Han;Nam, Ki-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.491-496
    • /
    • 2014
  • The resistive switching characteristics of resistive random access memory (ReRAM) based on amorphous $Ge_{0.5}Se_{0.5}$ thin films have been demonstrated by using Ti/Ag nanocrystals/$Ge_{0.5}Se_{0.5}$/Pt structure. Ag nanocrystals (Ag NCs) were spread on the amorphous $Ge_{0.5}Se_{0.5}$ thin film and they played the role of metal ions source. As a result, comparing the conventional Ag/$Ge_{0.5}Se_{0.5}$/Pt structure, this Ti/Ag NCs/$Ge_{0.5}Se_{0.5}$/Pt ReRAM device exhibits the highly uniform bipolar resistive switching (BRS) characteristics, such as the operating voltages, and the resistance values. At the same time, a stable DC endurance(> 100 cycles), and the excellent data retention (> $10^4$ sec) properties were found from the Ti/Ag NCs/$Ge_{0.5}Se_{0.5}$/Pt structured ReRAM device.

Probing Organic Ligands and their Binding Schemes on Nanocrystals by Mass Spectrometric and FT-IR Spectroscopic Imaging

  • Son, Jin Gyeong;Choi, Eunjin;Piao, Yuanzhe;Han, Sang Woo;Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.355-355
    • /
    • 2016
  • There has been an explosive development of nanocrystal (NC) synthesis and application due to their composition-dependent specific properties. Despite the composition, shape, and size of NCs foremost determine their physicochemical properties, the surface state and molecule conjugation also drastically change their characteristics. To make practical use of NCs, it is a prerequisite to understand the NC surface state and the degree to which they have been modified because the reaction occurs on the interface between the NCs and the surrounding medium. We report in here an analysis method to identify conjugated ligands and their binding states on semiconductor nanocrystals based on their molecular information. Surface science techniques, such as time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and FT-IR spectroscopy, are adopted based on the micro-aggregated sampling method. Typical trioctylphosphine oxide-based synthesis methods of CdSe/ZnS quantum dots (QDs) have been criticized because of the peculiar effects of impurities on the synthesis processes. Since the ToF-SIMS technique provides molecular composition evidence on the existence of certain ligands, we were able to clearly identify the n-octylphosphonic acid (OPA) as a surface ligand on CdSe/ZnS QDs. Furthermore, the complementary use of the ToF-SIMS technique with the FT-IR technique could reveals the OPA ligands' binding state as bidentate complexes.

  • PDF

Solution-Processed Inorganic Thin Film Transistors Fabricated from Butylamine-Capped Indium-Doped Zinc Oxide Nanocrystals

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.494-500
    • /
    • 2014
  • Indium-doped zinc oxide nanocrystals (IZO NCs), capped with stearic acid (SA) of different sizes, were synthesized using a hot injection method in a noncoordinating solvent 1-octadecene (ODE). The ligand exchange process was employed to modify the surface of IZO NCs by replacing the longer-chain ligand of stearic acid with the shorter-chain ligand of butylamine (BA). It should be noted that the ligand-exchange percentage was observed to be 75%. The change of particle size, morphology, and crystal structures were obtained using a field emission scanning electron microscope (FE-SEM) and X-ray diffraction pattern results. In our study, the 5 nm and 10 nm IZO NCs capped with stearic acid (SA-IZO) were ligand-exchanged with butylamine (BA), and were then spin-coated on a thermal oxide ($SiO_2$) gate insulator to fabricate a thin film transistor (TFT) device. The films were then annealed at various temperatures: $350^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, and $600^{\circ}C$. All samples showed semiconducting behavior and exhibited n-channel TFT. Curing temperature dependent on mobility was observed. Interestingly, mobility decreases with the increasing size of NCs from 5 to 10 nm. Miller-Abrahams hopping formalism was employed to explain the hopping mechanism insight our IZO NC films. By focusing on the effect of size, different curing temperatures, electron coupling, tunneling rate, and inter-NC separation, we found that the decrease in electron mobility for larger NCs was due to smaller electronic coupling.

Improved Uniformity in Resistive Switching Characteristics of GeSe Thin Film by Ag Nanocrystals

  • Park, Ye-Na;Shin, Tae-Jun;Lee, Hyun-Jin;Lee, Ji-Soo;Jeong, Yong-Ki;Ahn, So-Hyun;Lee, On-You;Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.237.2-237.2
    • /
    • 2013
  • ReRAM cell, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of conductive filament in a solid electrolyte [1,2]. Especially, Chalcogenide-based ReRAM have become a promising candidate due to the simple structure, high density and low power operation than other types of ReRAM but the uniformity of switching parameter is undesirable. It is because diffusion of ions from anode to cathode in solid electrolyte layer is random [3]. That is to say, the formation of conductive filament is not go through the same paths in each switching cycle which is one of the major obstacles for performance improvement of ReRAM devices. Therefore, to control of nonuniform conductive filament formation is a key point to achieve a high performance ReRAM. In this paper, we demonstrated the enhanced repeatable bipolar resistive switching memory characteristics by spreading the Ag nanocrystals (Ag NCs) on amorphous GeSe layer compared to the conventional Ag/GeSe/Pt structure without Ag NCs. The Ag NCs and Ag top electrode act as a metal supply source of our devices. Excellent resistive switching memory characteristics were obtained and improvement of voltage distribution was achieved from the Al/Ag NCs/GeSe/Pt structure. At the same time, a stable DC endurance (>100 cycles) and an excellent data retention (>104 sec) properties was found from the Al/Ag NCs/GeSe/ Pt structured ReRAMs.

  • PDF

Technology Trend of Luminescent Nanomaterials (나노입자 기반 발광 소재 연구동향)

  • Jeong, Hyewon;Son, Jae Sung
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.170-177
    • /
    • 2018
  • Colloidally synthesized luminescent nanocrystals (NCs) have attracted tremendous attention due to their unique nanoscale optical and electronic properties. The emission properties of these NCs can be precisely tuned by controlling their size, shape, and composition as well as by introducing appropriate dopant impurities. Nowadays, these NCs are actively utilized for various applications such as optoelectronic devices including light emitting diodes (LEDs), lasers, and solar cells, and bio-medical applications such as imaging agents and bio-sensors. In this review, we classify luminescent nanomaterials into quantum dots (QDs), upconversion nanoparticles (UCNPs), and perovskite NCs and present their intrinsic emission mechanism. Furthermore, the recently emerging issues of efficiency, toxicity, and durability in these materials are discussed for better understanding of industry demands. As well, the future outlook will be offered for researchers to guide the direction of future research.

Integrated Nano Optoelectronics

  • Jo, Moon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.117-117
    • /
    • 2012
  • Si:Ge alloy semiconductor nanocrystals (NCs) offer challenging opportunities for integrated optoelectronics/optoplasmonics, since they potentially allow unprecedentedly strong light-matter interaction in the wavelength range of the optical communication. In this talk, we discuss the recent research efforts of my laboratory to develop optoelectronic components based on individual group IV NCs. We present experimental demonstration of the individual NC optoelectronic devices, including broadband Si:Ge nanowire (NW) photodetectors, intra NW p-n diodes, Ge NC electrooptical modulators and near-field plasmonic NW detectors, where the unique size effects at the nanometer scales commonly manifest themselves. In particular, we demonstrated a scanning photocurrent imaging technique to investigate dynamics of photocarriers in individual Si:Ge NWs, which provides spatially and spectrally resolved local information without ensemble average. Our observations represent inherent size-effects of internal gain in semiconductor NCs, thereby provide a new insight into nano optoplasmonics.

  • PDF

High-Yield Gas-Phase Laser Photolysis Synthesis of Germanium Nanocrystals for High-Performance Lithium Ion Batteries (고성능 리튬이온 전지를 위한 저마늄 나노입자의 가스상 레이저 광분해 대량 합성법 개발)

  • Kim, Cang-Hyun;Im, Hyung-Soon;Cho, Yong-Jae;Chung, Chan-Su;Jang, Dong-Myung;Myung, Yoon;Kim, Han-Sung;Back, Seung-Hyuk;Im, Young-Rok;Park, Jeung-Hee;Song, Min-Seob;Cho, Won-Il;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.181-189
    • /
    • 2012
  • We developed a new high-yield synthesis method of free-standing germanium nanocrystals (Ge NCs) by means of the gas-phase photolysis of tetramethyl germanium in a closed reactor using an Nd-YAG pulsed laser. Size control (5-100 nm) can be simply achieved using a quenching gas. The $Ge_{1-x}Si_x$ NCs were synthesized by the photolysis of a tetramethyl silicon gas mixture and their composition was controlled by the partial pressure of precursors. The as-grown NCs are sheathed with thin (1-2 nm) carbon layers, and well dispersed to form a stable colloidal solution. Both Ge NC and Ge-RGO hybrids exhibit excellent cycling performance and high capacity of the lithium ion battery (800 and 1100 mAh/g after 50 cycles, respectively) as promising anode materials for the development of high-performance lithium batteries. This novel synthesis method of Ge NCs is expected to contribute to expand their applications in high-performance energy conversion systems.

Effects of zinc oxide and calcium-doped zinc oxide nanocrystals on cytotoxicity and reactive oxygen species production in different cell culture models

  • Gabriela Leite de Souza ;Camilla Christian Gomes Moura ;Anielle Christine Almeida Silva ;Juliane Zacour Marinho;Thaynara Rodrigues Silva ;Noelio Oliveira Dantas;Jessica Fernanda Sena Bonvicini ;Ana Paula Turrioni
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.54.1-54.16
    • /
    • 2020
  • Objectives: This study aimed to synthesize nanocrystals (NCs) of zinc oxide (ZnO) and calcium ion (Ca2+)-doped ZnO with different percentages of calcium oxide (CaO), to evaluate cytotoxicity and to assess the effects of the most promising NCs on cytotoxicity depending on lipopolysaccharide (LPS) stimulation. Materials and Methods: Nanomaterials were synthesized (ZnO and ZnO:xCa, x = 0.7; 1.0; 5.0; 9.0) and characterized using X-ray diffractometry, scanning electron microscopy, and methylene blue degradation. SAOS-2 and RAW 264.7 were treated with NCs, and evaluated for viability using the MTT assay. NCs with lower cytotoxicity were maintained in contact with LPS-stimulated (+LPS) and nonstimulated (-LPS) human dental pulp cells (hDPCs). Cell viability, nitric oxide (NO), and reactive oxygen species (ROS) production were evaluated. Cells kept in culture medium or LPS served as negative and positive controls, respectively. One-way analysis of variance and the Dunnett test (α = 0.05) were used for statistical testing. Results: ZnO:0.7Ca and ZnO:1.0Ca at 10 ㎍/mL were not cytotoxic to SAOS-2 and RAW 264.7. +LPS and -LPS hDPCs treated with ZnO, ZnO:0.7Ca, and ZnO:1.0Ca presented similar NO production to negative control (p > 0.05) and lower production compared to positive control (p < 0.05). All NCs showed reduced ROS production compared with the positive control group both in +LPS and -LPS cells (p < 0.05). Conclusions: NCs were successfully synthesized. ZnO, ZnO:0.7Ca and ZnO:1.0Ca presented the highest percentages of cell viability, decreased ROS and NO production in +LPS cells, and maintenance of NO production at basal levels.