Browse > Article
http://dx.doi.org/10.21218/CPR.2017.5.4.140

Synthesis of CuSbS2 and CuSbSe2 Nanocrystals by a Mechanochemical Method  

Park, Bo-In (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST))
Lee, Seung Yong (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST))
Lee, Doh-Kwon (Department of Nanomaterials Science and Engineering, Korea University of Science and Technology (UST))
Publication Information
Current Photovoltaic Research / v.5, no.4, 2017 , pp. 140-144 More about this Journal
Abstract
$CuSbS_2$ (CAS) and $CuSbSe_2$ (CASe) nanocrystals (NCs), which consist of earth-abundant elements, were synthesized by a mechanochemical method. Elemental precursors such as copper, antimony, sulfur, and selenium were used without adding any organic solvents or additives. The NCs were synthesized by milling for a few hours. The sudden phase changes occurred by self-ignition and propagation, as previously observed in other mechanochemical synthetic processes. The XRD, Raman, and TEM analysis were carried out to determine the crystallinity and secondary phase of the as-synthesized CAS and CASe NCs, confirming the phase-pure synthesis of CAS and CASe. Optical properties were investigated by UV-Vis spectroscopy and it was observed that the band gap energies were about 1.1 and 1.5 eV, respectively for CAS and CASe, suggesting the potential for the use as solar cell materials. The NC colloids dispersed in anhydrous ethanol were prepared and coated on Mo substrates by a facile doctor-blade method. The investigation on the solar cell properties of the as-synthesized materials is underway.
Keywords
$CuSbS_2$; $CuSbSe_2$; Mechanochemical; Milling; CAS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ramasamy, K., Qupta, R. K., Palchoudhury, S., Ivanov, S., Gupta, A., "Layer-structured copper antimony chalcogenides ($CuSbSexS_{2}$-x): stable electrode materials for supercapacitors" Chem. Mater. Vol. 27, pp. 379-386, 2015.   DOI
2 Sepelak, V., Duvel, A., Wilkening, M., Becker, K.-D., Heitjans, P., "Mechanochemical reactions and syntheses of oxides" Chem. Soc. Rev., Vol. 42, pp. 7507-7520, 2013.   DOI
3 Friscic, T., Halasz, T., Beldon, P. J., Belenguer, A. M., Adams, F., Kimber, S. A. J., Honkimaki, V., Dinnebier, R. E., "Real-time and in situ monitoring of mechanochemical milling reactions" Nat. Chem. Vol. 5, pp. 66-73, 2013.   DOI
4 Aquino, J. A. R., Vela, D. L. R., Shaji, S., Avellaneda, D. A., Krishnan, B., "Spray pyrolysed thin films of copper antimony sulfide as photovoltaic absorber" Phys. Status Solidi C, Vol. 13, No. 1, pp. 24-29, 2016.   DOI
5 Green, A. M., Hishikawa, Y., Warta, W., Dunlop, E. D., Levi, D. H., Hohl-Ebinger, J., Ho-Baillie, A. W. Y., "Solar cell efficiency tables (version 50)" Prog. Photovoltaics Vol. 25, pp. 668-676, 2017.   DOI
6 Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., Mitzi, D. B., "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Effi ciency" Adv. Energy Mater. Vol. 4, pp. 1301465(1)-1301465(5), 2014.
7 Zhao, Y., Burda, C., "Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials" Energy Environ. Sci., Vol. 5, pp. 5564-5576, 2012.   DOI
8 Efthimiopoulos, I., Zhang, J., Kucway, M., Park, C., Ewing, R. C., Wang, Y., "$Sb_{2}Se_{3}$ under pressure" Sci. Rep., Vol. 3, No. 2665, pp. 1-7, 2016.
9 Bake, J., Kumar, R. S., Sneed, D., Connolly, A., Zhang, Y., Velisavljevic, N., Paladugu, J., Pravica, M., Chen, C., Cornelius, A., Zhao, Y., "Pressure induced structural transitions in $CuSbS_{2}$ and $CuSbSe_{2}$ thermoelectric compounds" J. Alloys Compd., Vol. 643, pp. 186-194, 2015.   DOI
10 Efthimiopoulos, I., Buchan, C., Wang, Y., "Structural properties of $Sb_{2}S_{3}$ under pressure: evidence of an electronic topological transition" Sci. Rep., Vol. 6, No. 24246, pp. 1-9, 2016.   DOI
11 Minceva-Sukarova, B., Najdoskia, M., Grozdanov, I., Chunnilall, C. J., "Raman spectra of thin solid films of some metal sulfides" J. Mol. Struct., Vol. 410-411, pp. 267-270, 1997.
12 Chen, K., Zhou, J., Chen, W., Chen, Q., Zhou, P., Liu, Y., "A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield" Nanoscale, Vol. 8, pp. 5146-5152, 2016.   DOI
13 Park, B.-I., Yu, S., Hwang, Y., Cho, S.-H., Lee, J.-S., Park, C., Lee, D.-K., Lee, S. Y., "Highly crystalline $Fe_{2}GeS_{4}$ nanocrystals: green synthesis and their structural and optical characterization" J. Mater. Chem. A, Vol. 3, pp. 2265-2270, 2015.   DOI
14 Yang, B., Wang, L., Han, J., Zhou, Y., Song, H., Chen, S., Zhong, J., Lv, L., Niu, D., Tang, J., "$CuSbS_{2}$ as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study" Chem. Mater. Vol. 26, pp. 3135-3143, 2014.   DOI
15 Yu, L., Kokenyesi, R. S., Keszler, D. A., Zunger, A., "Inverse design of high absorption thin-film photovoltaic materials" Adv. Energy Mater. Vol. 3, pp. 43-48, 2013.   DOI
16 Fadhli, Y., Rabhi, A., Kanzari, M., "Effect of annealing time and substrates nature on the physical properties of $CuSbS_{2}$ thin films" J. Mater. Sci.: Mater. Electron, Vol. 25, pp. 4767-4773, 2014.   DOI
17 Ramasamy, K., Sims, H.,Butler, W. H., Gupta, A., "Selective nanocrystal synthesis and calculated electronic structure of all four phases of Copper-Antimony-Sulfide" Chem. Mater. Vol. 26, pp. 2891-2899, 2014.   DOI
18 Xue, D-J., Yang, B., Yuan, Z.-K., Wang, G., Liu, X., Zhou, Y., Hu, L., Pan, D., Chen, S., Tang, J., "$CuSbSe_{2}$ as a potential photovoltaic absorber material: studies from theory to experiment" Adv. Energy Mater. Vol. 5, pp. 1501203(1)-1501203(9), 2015.
19 Park, B.-I., Hwang, Y., Lee, S. Y., Lee, J.-S, Park, J.-K., Jeong, J., Kim, J. Y., Kim, B. S., Cho S.-H., Lee, D.-K., "Solvent-free synthesis of $Cu_{2}ZnSnS_{4}$ nanocrystals: a facile, green, up-scalable route for low cost photovoltaic cells" Nanoscale, Vol. 6, pp. 11703-11711, 2014.   DOI
20 Kapur, V. K., Bansal, A., Le, P., Asensio, O. I., "Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks" Thin Solid Films Vol. 431-432, pp. 53-57, 2003.   DOI
21 Habas, S. E., Platt, H. A. S.,Hest, M. F. A. M . V., Ginley, D. S., "Low-cost inorganic solar cells: from ink to printed device" Chem. Rev. Vol. 110, pp. 6571-6594, 2010.   DOI
22 Sinsermsuksakul, P., Sun, L., Lee, S. W., Park, H . H., Kim, S. B., Yang, C., Gordon, R. G., "Overcoming efficiency limitations of SnS-based solar cells" Adv. Energy Mater. pp. 1400496(1)-1400496(7), 2014.
23 Zhang, H., Xu, Q., Tan, G., "Physical preparation and optical properties of $CuSbS_{2}$ nanocrystals by mechanical alloying process" Electron. Mater. Lett., Vol. 12, No. 5, pp. 568-573, 2016.   DOI
24 Tanaka, T., Sueishi, T., Saito, K., Guo, Q., Nishio, M., Yu, K. M., Walukiewicz, W., "Existence and removal of Cu2Se second phase in coevaporated $Fe_{2}GeS_{4}$ thin films" J. Appl. Phys., Vol. 111, pp. 053522-1-053522-4, 2012.   DOI
25 Tauc, J., Grigorovici, R., Vancu, A., "Optical properties and electronic structure of amorphous germanium" Phys. Stat. Sol., Vol. 15, pp. 627-637, 1966.   DOI
26 Welch, A. W., Baranowski, L. L., Zawadzki, P., Lany, S., Wolden, C. A., Zakutayev, A., "$CuSbSe_{2}$ photovoltaic devices with 3% efficiency" Appl. Phys. Express, Vol. 8, pp. 082301-1-082301-4, 2015.   DOI
27 Baru, S., Ahn, S. J., Ahn, S. K., Yoon, K., Cho, A., "Fabrication and characterization of cost-efficient $CuSbS_{2}$ thin film solar cells using hybrid inks" Sol. Energy Mater. Sol. Cells, Vol. 151, pp. 14-23, 2016.   DOI
28 Wan, L., Ma, C., Hu, K., Zhou, R., Mao, X., Pan, S., Wong, L. H., Xu, J., "Two-stage co-evaporated $CuSbS_{2}$ thin films for solar cells" J. Alloys Compd., Vol. 680, pp. 182-190, 2016.   DOI
29 Takei, K., Maeda, T., Wada, T., "Crystallographic and optical properties of $CuSbS_{2}$ and $CuSb(S_{11-xSex)_{2}$" Thin Solid Films, Vol. 582, pp. 263-268, 2015.   DOI