DOI QR코드

DOI QR Code

High-Yield Gas-Phase Laser Photolysis Synthesis of Germanium Nanocrystals for High-Performance Lithium Ion Batteries

고성능 리튬이온 전지를 위한 저마늄 나노입자의 가스상 레이저 광분해 대량 합성법 개발

  • 김창현 (고려대학교 소재화학과) ;
  • 임형순 (고려대학교 소재화학과) ;
  • 조용재 (고려대학교 소재화학과) ;
  • 정찬수 (고려대학교 소재화학과) ;
  • 장동명 (고려대학교 소재화학과) ;
  • 명윤 (고려대학교 소재화학과) ;
  • 김한성 (고려대학교 소재화학과) ;
  • 백승혁 (고려대학교 소재화학과) ;
  • 임영록 (고려대학교 소재화학과) ;
  • 박정희 (고려대학교 소재화학과) ;
  • 송민섭 (한국과학기술연구원 이차전지연구센터) ;
  • 조원일 (한국과학기술연구원 이차전지연구센터) ;
  • 차은희 (호서대학교 그린에너지 공학과 대학원)
  • Received : 2012.08.19
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

We developed a new high-yield synthesis method of free-standing germanium nanocrystals (Ge NCs) by means of the gas-phase photolysis of tetramethyl germanium in a closed reactor using an Nd-YAG pulsed laser. Size control (5-100 nm) can be simply achieved using a quenching gas. The $Ge_{1-x}Si_x$ NCs were synthesized by the photolysis of a tetramethyl silicon gas mixture and their composition was controlled by the partial pressure of precursors. The as-grown NCs are sheathed with thin (1-2 nm) carbon layers, and well dispersed to form a stable colloidal solution. Both Ge NC and Ge-RGO hybrids exhibit excellent cycling performance and high capacity of the lithium ion battery (800 and 1100 mAh/g after 50 cycles, respectively) as promising anode materials for the development of high-performance lithium batteries. This novel synthesis method of Ge NCs is expected to contribute to expand their applications in high-performance energy conversion systems.

ND-YAG 펄스 레이저를 사용하여 밀폐 반응기에서 가스상 $Ge(CH_3)_4$ (tetramethyl germanium, TMG)을 광분해하여 Ge (germanium) 나노입자를 합성하는 새로운 합성법을 개발하였다. 나노입자의 크기는 간단히 충돌이완가스를 사용하여 5-100 nm로 조절할 수 있었다. $Ge_{1-x}Si_x$ 합금 나노입자는 TMG와 $Si(CH_3)_4$ (tetramethyl silicon, TMS) 혼합가스를 광분해하여 합성하였으며, 이때 반응기 안의 가스 혼합비율에 따라 나노입자의 조성을 조절할 수 있었다. 합성된 나노입자는 얇은 탄소층(1-2 nm) 에 싸여있고, 안정한 콜로이드 용액형태로 잘 분산되어 있다. 합성된 Ge 나노입자와 Ge-RGO (reduced graphene oxide) 하이브리드 구조체 모두 리튬이온전지 특성이 50 사이클 이후 각각 800, 1,100 mAh/g의 높은 방전용량을 갖는 것을 확인하였고, 이 방법은 이전의 Ge 나노입자 합성법과 비교하여 높은 수득률, 우수한 재현성, 성분조절의 용이 하므로, 고성능 리튬 전지의 개발을 위한 음극소재로 기대된다. 이와 같은 Ge 나노입자의 새로운 대량 합성법은 고성능 에너지 변환 소재 실용화에 기여할 것으로 예상된다.

Keywords

References

  1. J. Heath, J. Shiang, and A. Alivisatos, 'Germanium quantum dots: Optical properties and synthesis.' J. Chem. Phys., 101, 1607 (1994). https://doi.org/10.1063/1.467781
  2. Y. Maeda, 'Visible photoluminescence from nanocrystallite Ge embedded in a glassy $SiO_{2}$ matrix: Evidence in support of the quantum-confinement mechanism' Phys. Rev. B, 51, 1658 (1995). https://doi.org/10.1103/PhysRevB.51.1658
  3. C. Bostedt, T. van Buuren, T. Willey, N. Franco, L. Terminello, C. Heske, and T. Moller, 'Strong quantumconfinement effects in the conduction band of germanium nanocrystals' Appl. Phys. Lett., 84, 4056 (2004). https://doi.org/10.1063/1.1751616
  4. D. Lee, J. Pietryga, I. Robel, D. Werder, R. Schaller, and V. Klimov, 'Colloidal Synthesis of Infrared-Emitting Germanium Nanocrystals' J. Am. Chem. Soc., 131, 3436 (2009). https://doi.org/10.1021/ja809218s
  5. D. Ruddy, J. Johnson , E. Smith, and N. Neale, 'Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals' ACS Nano, 4, 7459 ( 2010). https://doi.org/10.1021/nn102728u
  6. G. Armatas and M. Kanatzidis, 'Size Dependence in Hexagonal Mesoporous Germanium: Pore Wall Thickness versus Energy Gap and Photoluminescence.' Nano Lett., 10, 3330 (2010). https://doi.org/10.1021/nl101004q
  7. D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P. McIntyre, T. Krishnamohan, and K. Saraswat, 'Germanium nanowire field-effect transistors with $SiO_{2}$ and high-${\kappa}$ $HfO_{2}$ gate dielectrics' Appl. Phys. Lett., 83, 2432 (2003). https://doi.org/10.1063/1.1611644
  8. A. Greytak, L. Lauhon, M. Gudiksen, and C. Lieber. 'Growth and transport properties of complementary germanium nanowire field-effect transistors' Appl. Phys. Lett., 84, 4176 (2004). https://doi.org/10.1063/1.1755846
  9. T. Hanrath and B. Korgel, 'Chemical Surface Passivation of Ge Nanowires.'J. Am. Chem. Soc., 126, 15466 (2004). https://doi.org/10.1021/ja0465808
  10. T. Lambert, N. Andrews, H. Gerung, T.Boyle, J. Oliver, B. Wilson, and S. Han, 'Water-Soluble Germanium(0) Nanocrystals: Cell Recognition and Near-Infrared Photothermal Conversion Properties' Small, 3, 691 (2007). https://doi.org/10.1002/smll.200600529
  11. X. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li, and F. Endres, 'Electrodeposition of 3D Ordered Macroporous Germanium from Ionic Liquids: A Feasible Method to Make Photonic Crystals with a High Dielectric Constant' Angew. Chem. Int. Ed., 48, 2703 (2009). https://doi.org/10.1002/anie.200805252
  12. B. Sun, G. Zou, X. Shen, and X. Zhang, 'Exciton dissociation and photovoltaic effect in germanium nanocrystals and poly(3-hexylthiophene) composites' Appl. Phys. Lett., 94, 233504 (2009). https://doi.org/10.1063/1.3152997
  13. S. Assefa, F. Xia, and Y. A. Vlasov, 'Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects' Nature, 464, 80 (2010). https://doi.org/10.1038/nature08813
  14. J. Michel, J. Liu, and L. Kimerling, 'High-performance Ge-on-Si photodetectors' Nat. Photonics, 4, 527 (2010). https://doi.org/10.1038/nphoton.2010.157
  15. E. Henderson, M. Seino, D. Puzzo, and G. A. Ozin, 'Colloidally Stable Germanium Nanocrystals for Photonic Applications' ACS Nano, 4, 7683 (2010). https://doi.org/10.1021/nn102521k
  16. L. Cao, J. Park, P. Fan, B. Clemens, and M. L. Brongersma, 'Resonant Germanium Nanoantenna Photodetectors' Nano Lett., 10, 1229 (2010). https://doi.org/10.1021/nl9037278
  17. D. Xue, J. Wang, Y. Wang, S. Xin, Y. Guo, and L. Wan, 'Facile Synthesis of Germanium Nanocrystals and Their Application in Organic-Inorganic Hybrid Photodetectors' Adv. Mater., 23, 3704 (2011). https://doi.org/10.1002/adma.201101436
  18. C. Chan, X. Zhang, and Y. Cui, 'High Capacity Li Ion Battery Anodes Using Ge Nanowires' Nano Lett., 8, 307 (2008). https://doi.org/10.1021/nl0727157
  19. M. Kim and J. Cho, 'Nanocomposite of Amorphous Ge, and Sn Nanoparticles as an Anode Material for Li Secondary Battery' J. Electrochem. Soc., 156, A277 (2009). https://doi.org/10.1149/1.3073877
  20. M. Park, K. Kim, J. Kim, and J. Cho, 'Flexible Dimensional Control of High-Capacity Li-Ion- Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies' Adv. Mater., 22, 415 (2010). https://doi.org/10.1002/adma.200901846
  21. M. Seo, M. Park, K. Lee, K. Kim. J. Kim, and J. Cho, 'High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries' Energy Environ. Sci., 4, 425 (2011). https://doi.org/10.1039/c0ee00552e
  22. M. Park, Y. Cho, K. Kim, J. Kim, Liu, and M. J. Cho, 'Germanium Nanotubes Prepared by Using the Kirkendall Effect as Anodes for High-Rate Lithium Batteries' Angew. Chem. Int. Ed., 50, 9647 (2011). https://doi.org/10.1002/anie.201103062
  23. K. Seng, M. Park, Z. Cuo, H. Liu, and J. Cho, 'Self- Assembled Germanium/Carbon Nanostructures as High- Power Anode Material for the Lithium-Ion Battery' Angew. Chem. Int. Ed., 51, 5657 (2012). https://doi.org/10.1002/anie.201201488
  24. X. Wang, W. Han, H. Chen, J. Bai, T. Tyson, X. Yu, X. Wang, and X. Yang, 'Amorphous Hierarchical Porous $GeO_{x}$ as High-Capacity Anodes for Li Ion Batteries with Very Long Cycling Life' J. Am. Chem. Soc., 133, 20692 (2011). https://doi.org/10.1021/ja208880f
  25. T. Song, H. Cheng, H. Choi, J. Lee, H. Han, D. Lee, D. Yoo, M. Kwon, J. Choi, S. Doo, H. Chang, J. Xiao, Y. Huang, W. Park, Y. Chung, H. Kim, J. Rogers, and U. Paik, 'Si/Ge Double-Layered Nanotube Array as a Lithium Ion Battery Anode' ACS Nano, 6, 303 (2012). https://doi.org/10.1021/nn203572n
  26. G. Jo, I. Choi, H. Ahn, and M. Park, 'Binder-free Ge nanoparticles-carbon hybrids for anode materials of advanced lithium batteries with high capacity and rate capability' Chem. Commun., 48, 3987 (2012). https://doi.org/10.1039/c2cc30294b
  27. D. Xue, S. Xin, Y. Yan, K. Jiang, Y. Yin, Y. Guo, and L. Wan, 'Improving the Electrode Performance of Ge through Ge@C Core-Shell Nanoparticles and Graphene Networks' J. Am. Chem. Soc., 134, 2512 (2012) . https://doi.org/10.1021/ja211266m
  28. L. Tan, Z. Lu, H. Tan, J. Zhu, X. Rui, Q. Yan, and H. Hng, 'Germanium nanowires-based carbon composite as anodes for lithium-ion batteries' J. Power Sources, 206, 253 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.064
  29. N. Rudawski, B. Darby, B.Yates, K. Jones, R. Elliman, and A. Volinsky, 'Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes' Appl. Phys. Lett., 100, 083111 (2012). https://doi.org/10.1063/1.3689781
  30. M. R. St. John, A. J. Furgala, and A, F. Sammells, 'Thermodynamic Studies of Li-Ge Alloys: Application to Negative Electrodes for Molten Salt Batteries' J. Electrochem. Soc., 129, 246 (1982). https://doi.org/10.1149/1.2123803
  31. J. Luther, M. Law, M. Beard, Q. Song, M. Reese, R. Ellingson, and A. Nozik, 'Schottky Solar Cells Based on Colloidal Nanocrystal Films' Nano Lett., 8, 3488 (2008). https://doi.org/10.1021/nl802476m
  32. O. Semonin, J. Luther, S. Choi, H. Chen, J. Gao, A. Nozik, and M. Beard, 'Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell' Science, 334, 1530 (2011). https://doi.org/10.1126/science.1209845
  33. J. Tang, K. Kemp, S. Hoogland, K. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. Chou, A. Fischer, A. Amassian, J. Asbury, and E. Sargent, 'Colloidal-quantum-dot photovoltaics using atomic-ligand passivation' Nat. Mater., 10, 765 (2011). https://doi.org/10.1038/nmat3118
  34. R. Gresback, Z. Holman and U. Kortshagen, 'Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals' Appl. Phys. Lett., 91, 093119 (2007). https://doi.org/10.1063/1.2778356
  35. Z. Holman and U. Kortshagen, 'Nanocrystal Inks without Ligands: Stable Colloids of Bare Germanium Nanocrystals' Nano Lett., 11, 2133 (2011). https://doi.org/10.1021/nl200774y
  36. Erogbogbo, T. Liu, N. Ramadurai, P. Tuccarione, L. Lai, M. Swihart, and P. Prasad, 'Creating Ligand-Free Silicon Germanium Alloy Nanocrystal Inks' ACS Nano, 5, 7950 (2011). https://doi.org/10.1021/nn2023304
  37. W. Hummers Jr and R. Offeman, 'Preparation of Graphitic Oxide' J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  38. J. Pola and R. Taylor, 'Excimer laser photolysis of tetramethylgermane' Organometallic Chem., 437, 271 (1992). https://doi.org/10.1016/0022-328X(92)85074-7
  39. M. Jakoubková1, Z. Bastl, P. Fiedler, and J. Pola, 'IR laser thermolysis of tetramethylgermane for CVD of germanium' Infrared Phys. Technol., 35, 633 (1994). https://doi.org/10.1016/1350-4495(94)90029-9
  40. F. Ishihara, H. Uji, T. Kamimura, S. Matsumoto, H. Higuchi, and S. Chichibu, 'Use of Tetraethylgermane in ArF Excimer Laser Chemical Vapor Deposition of Amorphous Silicon-Germanium Films' Jpn. J. Appl. Phys., 34, 2229 (1995). https://doi.org/10.1143/JJAP.34.2229
  41. A. Stanley, 'Laser sensitized dissociation of tetramethyl germane' J. Photochem. Photobio. A: Chem., 99, 1 (1996). https://doi.org/10.1016/1010-6030(96)04352-3
  42. M. Antman, L. Hilt, E. Christophy, and J. BelBruno, 'Multiphoton ionization spectroscopy of germanium atoms produced by multiphoton dissociation of Ge $(C_{2}H_{5})_{4})$' Chem. Phys. Lett., 221, 294 (1994). https://doi.org/10.1016/0009-2614(94)00262-2
  43. J. Park, Y. Kang, N. Song, and D. Kim, 'Multiphoton Ionization/Dissociation of Ge$(CH_{3})_{4}$ and Ge$(C_{2}H_{5})_{4})$' Bull. Korean. Chem. Soc., 20, 367 (1999).
  44. N. Haider, D. Husain and M. Kabir, 'The collisional behaviour of electronically excited germanium atoms, Ge$(4p^{2}(^{1}D_{2}))$, with simple molecules investigated by time-resolved atomic resonance absorption spectroscopy in the UV' J. Photochem. Photobio. A: Chem., 72, 97 ( 1993). https://doi.org/10.1016/1010-6030(93)85016-2
  45. D. Husain, A. Ioannou, and M. Kabir, 'Collisional quenching of electronically excited germanium atoms, Ge[4p2(1S0)], by small molecules investigated by timeresolved atomic resonance absorption spectroscopy' J. Photochem. Photobio. A: Chem., 110, 213 (1997). https://doi.org/10.1016/S1010-6030(97)00200-1