DOI QR코드

DOI QR Code

Technology Trend of Luminescent Nanomaterials

나노입자 기반 발광 소재 연구동향

  • Jeong, Hyewon (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Son, Jae Sung (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 정혜원 (울산과학기술원(UNIST) 신소재공학부) ;
  • 손재성 (울산과학기술원(UNIST) 신소재공학부)
  • Received : 2018.04.11
  • Accepted : 2018.04.21
  • Published : 2018.04.28

Abstract

Colloidally synthesized luminescent nanocrystals (NCs) have attracted tremendous attention due to their unique nanoscale optical and electronic properties. The emission properties of these NCs can be precisely tuned by controlling their size, shape, and composition as well as by introducing appropriate dopant impurities. Nowadays, these NCs are actively utilized for various applications such as optoelectronic devices including light emitting diodes (LEDs), lasers, and solar cells, and bio-medical applications such as imaging agents and bio-sensors. In this review, we classify luminescent nanomaterials into quantum dots (QDs), upconversion nanoparticles (UCNPs), and perovskite NCs and present their intrinsic emission mechanism. Furthermore, the recently emerging issues of efficiency, toxicity, and durability in these materials are discussed for better understanding of industry demands. As well, the future outlook will be offered for researchers to guide the direction of future research.

Keywords

References

  1. C. Feldmann: Nanoscale, 3 (2011) 1947. https://doi.org/10.1039/c1nr90008k
  2. N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Diaz, J. B. Dele- hanty and I. L. Medintz: Chem. Rev., 117 (2017) 536. https://doi.org/10.1021/acs.chemrev.6b00030
  3. C. de Mello Donega: Chem. Soc. Rev., 40 (2011) 1512. https://doi.org/10.1039/C0CS00055H
  4. Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulovic: Nature Photon., 7 (2013) 13. https://doi.org/10.1038/nphoton.2012.328
  5. H. Y. Kim, Y. J. Park, J. Kim, C. J. Ham, J. Lee, Y. Kim, T. Greco, C. Ippen, A. Wedel, B. Ju and M. S. Oh: Adv. Funct. Mater., 26 (2016) 3454. https://doi.org/10.1002/adfm.201505549
  6. W. R. Algar, K. Susumu, J. B. Delehanty and I. L. Medintz: Anal. Chem., 83 (2011) 8826. https://doi.org/10.1021/ac201331r
  7. H. Qin, R. Meng, N. Wang and X. Peng: Adv. Mater., 29 (2017) 1606923. https://doi.org/10.1002/adma.201606923
  8. M. Kuno, D. P. Fromm, A. Gallagher, D. J. Nesbitt, O. I. Micic and A. J. Nozik: Nano Lett., 1 (2001) 557. https://doi.org/10.1021/nl010049i
  9. A. L. Efros and D. J. Nesbitt: Nat. Nanotech., 11 (2016) 661. https://doi.org/10.1038/nnano.2016.140
  10. W. K. Bae, Y. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga and V. I. Klimov: Nat. Commun., 4 (2013) 2661. https://doi.org/10.1038/ncomms3661
  11. A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon and J. A. Hollingsworth: Nano Lett., 12 (2012) 5545. https://doi.org/10.1021/nl302453x
  12. P. Reiss, M. Protiere and L. Li: Small, 5 (2009) 154. https://doi.org/10.1002/smll.200800841
  13. X. B. Chem, Y. B. Lou, A. C. Samia and C. Burda: Nano Lett., 3 (2003) 799. https://doi.org/10.1021/nl034243b
  14. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. Hermier and B. Dubertret: Nat. Mater., 7 (2008) 659. https://doi.org/10.1038/nmat2222
  15. V. Brunetti, H. Chibli, R. Fiammengo, A. Galeone, M. A. Malvindi, G. Vecchio, R. Cingolani, J. L. Nadeau and P. P. Pompa: Nanoscale, 5 (2013) 307. https://doi.org/10.1039/C2NR33024E
  16. J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char and S. Lee: Chem. Mater., 23 (2011) 4459. https://doi.org/10.1021/cm201550w
  17. J. P. Park, J. Lee and S. Kim: Sci. Rep., 6 (2016) 1. https://doi.org/10.1038/s41598-016-0001-8
  18. D. Mocatta, G. Cohen, J. Schattner, E. Rabani and U. Banin: Science, 332 (2011) 77. https://doi.org/10.1126/science.1196321
  19. P. Wu and W. Yan: Chem. Soc. Rev., 42 (2013) 5489. https://doi.org/10.1039/c3cs60017c
  20. S. Wilhelm: ACS Nano, 11 (2017) 10644. https://doi.org/10.1021/acsnano.7b07120
  21. G. Chen, H. Qiu, P. N. Prasad and X. Chen: Chem. Rev., 114 (2014) 5161. https://doi.org/10.1021/cr400425h
  22. H. Dong, L. Sun and C. Yan: Nanoscale, 5 (2013) 5703. https://doi.org/10.1039/c3nr34069d
  23. M. Haase and H. Schafer: Angew. Chem. Int. Ed., 50 (2011) 5808. https://doi.org/10.1002/anie.201005159
  24. H. Dong, L. Sun and C. Yan: Chem. Soc. Rev., 44 (2015) 1608. https://doi.org/10.1039/C4CS00188E
  25. F. Wang and X. Liu: J. Am. Chem. Soc., 130 (2008) 5642. https://doi.org/10.1021/ja800868a
  26. C. Duan, L. Liang, L. Li, R. Zhang and Z. P. Xu: J. Mater. Chem. B., 6 (2018) 192. https://doi.org/10.1039/C7TB02527K
  27. F. Auzel: Chem. Rev., 104 (2004) 139. https://doi.org/10.1021/cr020357g
  28. Q. Zou, P. Huang, W. Zheng, W. You, R. Li, D. Tu, J. Xu and X. Chen: Nanoscale, 9 (2017) 6521. https://doi.org/10.1039/C7NR02124K
  29. M. Xue, X. Zhu, X. Qiu, Y. Gu, W. Feng and F. Li: ACS Appl. Mater. Interfaces, 8 (2016) 17894. https://doi.org/10.1021/acsami.6b05609
  30. F. Wang and X. Liu: J. Am. Chem. Soc., 130 (2008) 5642. https://doi.org/10.1021/ja800868a
  31. Z. Li and Y. Zhang: Nanotech., 19 (2008) 1.
  32. S. Ye, Y. Teng, A. Juan, J. Wei, L. Wang and J. Guo: Adv. Opt. Mater., 5 (2017) 1.
  33. F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan and J. A. Capobianco: Adv. Func. Mater., 19 (2009) 2924. https://doi.org/10.1002/adfm.200900234
  34. Y. Zhong, Z. Ma, S. Zhu, J. Yue, M. Zhang, A. L. Antaris, J. Yuan, R. Cui, H. Wan, Y. Zhou, W. Wang, N. F. Huang, J. Luo, Z. Hu and H. Dai: Nat. Commun., 8 (2017) 1. https://doi.org/10.1038/s41467-016-0009-6
  35. W. Li, Z. Wang, F. Deschler, S. Gao, R. H. Friend and A. K. Cheethan: Nat. Rev. Mater., 2 (2017) 1.
  36. M. V. Kovalenko, L. Protesescu and M. I. Bodnarchuk: Science, 358 (2017) 745. https://doi.org/10.1126/science.aam7093
  37. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok: Nat. Mater., 13 (2014) 897. https://doi.org/10.1038/nmat4014
  38. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh and S. I. Seok: Science, 356 (2017) 167. https://doi.org/10.1126/science.aam6620
  39. Q. A. Akkerman, G. Raino, M. V. Kovalenko and L. Manna: Nat. Mater., (2018) 1.
  40. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko: Nano Lett., 15 (2015) 5635. https://doi.org/10.1021/acs.nanolett.5b02404
  41. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko: Nano Lett., 15 (2015) 3692. https://doi.org/10.1021/nl5048779
  42. H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend and T. Lee: Science, 350 (2015) 1222. https://doi.org/10.1126/science.aad1818
  43. D. Parabek, Y. Dong, T. Qiao, D. Rossi and D. H. Son: J. Am. Chem. Soc., 139 (2017) 4358. https://doi.org/10.1021/jacs.7b01480
  44. Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato and L. Manna: J. Am. Chem. Soc., 137 (2015) 10276. https://doi.org/10.1021/jacs.5b05602
  45. R. E. Brandt, J. R. Poindexter, P. Gorai, R. C. Kurchin, R. L. Z. Hoye, L. Nienhaus, M. W. B. Wilson, J. A. Poliz- zotti, R. Sereika, R. Zaltauskas, L. C. Lee, J. L. MacManus-Driscoll, M. Bawendi, V. Stevanovic and T. Buonassisi: Chem. Mater., 29 (2017) 4667. https://doi.org/10.1021/acs.chemmater.6b05496
  46. A. Luiudice, S. Saris, E. Oveisi, D. T. L. Alexander and R. Buonsanti: Angew. Chem. Int. Ed., 56 (2017) 10696. https://doi.org/10.1002/anie.201703703
  47. F. Krieg, S. T, Ochsenbein, S. Yakunin, S. Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C. Shih, I. Infante and M. V. Kovalenko: ACS Energy Lett., 3 (2018) 641. https://doi.org/10.1021/acsenergylett.8b00035
  48. G. Pan, X. Bai, D. Yang, X. Chen, P. Jing, S. Qu, L. Zhang, D. Zhou, J. Zhu, W. Xu, B. Dong and H. Song: Nano Lett., 17 (2017) 8005. https://doi.org/10.1021/acs.nanolett.7b04575
  49. W. Liu, Q. Lin, H. Li, K. Wu, I. Robel, J. M. Pietryga and V. I. Klimov: J. Am. Chem. Soc. 138 (2016) 14954. https://doi.org/10.1021/jacs.6b08085
  50. S. Dastidar, D. A. Egger, L. Z. Tan, S. B. Cromer, A. D. Dillon, S. Liu, L. Kronik, A. M. Rappes and A. T. Fafarman: Nano Lett., 16 (2016) 3563. https://doi.org/10.1021/acs.nanolett.6b00635