DOI QR코드

DOI QR Code

Synthesis of CuSbS2 and CuSbSe2 Nanocrystals by a Mechanochemical Method

기계화학적 방법에 의한 CuSbS2와 CuSbSe2 나노입자의 합성

  • Park, Bo-In (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Seung Yong (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Doh-Kwon (Department of Nanomaterials Science and Engineering, Korea University of Science and Technology (UST))
  • 박보인 (한국과학기술연구원, 물질구조제어연구센터) ;
  • 이승용 (한국과학기술연구원, 물질구조제어연구센터) ;
  • 이도권 (과학기술연합대학원대학교, 나노재료공학과)
  • Received : 2017.09.08
  • Accepted : 2017.12.16
  • Published : 2017.12.31

Abstract

$CuSbS_2$ (CAS) and $CuSbSe_2$ (CASe) nanocrystals (NCs), which consist of earth-abundant elements, were synthesized by a mechanochemical method. Elemental precursors such as copper, antimony, sulfur, and selenium were used without adding any organic solvents or additives. The NCs were synthesized by milling for a few hours. The sudden phase changes occurred by self-ignition and propagation, as previously observed in other mechanochemical synthetic processes. The XRD, Raman, and TEM analysis were carried out to determine the crystallinity and secondary phase of the as-synthesized CAS and CASe NCs, confirming the phase-pure synthesis of CAS and CASe. Optical properties were investigated by UV-Vis spectroscopy and it was observed that the band gap energies were about 1.1 and 1.5 eV, respectively for CAS and CASe, suggesting the potential for the use as solar cell materials. The NC colloids dispersed in anhydrous ethanol were prepared and coated on Mo substrates by a facile doctor-blade method. The investigation on the solar cell properties of the as-synthesized materials is underway.

Keywords

References

  1. Green, A. M., Hishikawa, Y., Warta, W., Dunlop, E. D., Levi, D. H., Hohl-Ebinger, J., Ho-Baillie, A. W. Y., "Solar cell efficiency tables (version 50)" Prog. Photovoltaics Vol. 25, pp. 668-676, 2017. https://doi.org/10.1002/pip.2909
  2. Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., Mitzi, D. B., "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Effi ciency" Adv. Energy Mater. Vol. 4, pp. 1301465(1)-1301465(5), 2014.
  3. Zhao, Y., Burda, C., "Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials" Energy Environ. Sci., Vol. 5, pp. 5564-5576, 2012. https://doi.org/10.1039/C1EE02734D
  4. Kapur, V. K., Bansal, A., Le, P., Asensio, O. I., "Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks" Thin Solid Films Vol. 431-432, pp. 53-57, 2003. https://doi.org/10.1016/S0040-6090(03)00253-0
  5. Park, B.-I., Hwang, Y., Lee, S. Y., Lee, J.-S, Park, J.-K., Jeong, J., Kim, J. Y., Kim, B. S., Cho S.-H., Lee, D.-K., "Solvent-free synthesis of $Cu_{2}ZnSnS_{4}$ nanocrystals: a facile, green, up-scalable route for low cost photovoltaic cells" Nanoscale, Vol. 6, pp. 11703-11711, 2014. https://doi.org/10.1039/C4NR02564D
  6. Habas, S. E., Platt, H. A. S.,Hest, M. F. A. M . V., Ginley, D. S., "Low-cost inorganic solar cells: from ink to printed device" Chem. Rev. Vol. 110, pp. 6571-6594, 2010. https://doi.org/10.1021/cr100191d
  7. Sinsermsuksakul, P., Sun, L., Lee, S. W., Park, H . H., Kim, S. B., Yang, C., Gordon, R. G., "Overcoming efficiency limitations of SnS-based solar cells" Adv. Energy Mater. pp. 1400496(1)-1400496(7), 2014.
  8. Park, B.-I., Yu, S., Hwang, Y., Cho, S.-H., Lee, J.-S., Park, C., Lee, D.-K., Lee, S. Y., "Highly crystalline $Fe_{2}GeS_{4}$ nanocrystals: green synthesis and their structural and optical characterization" J. Mater. Chem. A, Vol. 3, pp. 2265-2270, 2015. https://doi.org/10.1039/C4TA05850J
  9. Yang, B., Wang, L., Han, J., Zhou, Y., Song, H., Chen, S., Zhong, J., Lv, L., Niu, D., Tang, J., "$CuSbS_{2}$ as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study" Chem. Mater. Vol. 26, pp. 3135-3143, 2014. https://doi.org/10.1021/cm500516v
  10. Yu, L., Kokenyesi, R. S., Keszler, D. A., Zunger, A., "Inverse design of high absorption thin-film photovoltaic materials" Adv. Energy Mater. Vol. 3, pp. 43-48, 2013. https://doi.org/10.1002/aenm.201200538
  11. Chen, K., Zhou, J., Chen, W., Chen, Q., Zhou, P., Liu, Y., "A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield" Nanoscale, Vol. 8, pp. 5146-5152, 2016. https://doi.org/10.1039/C5NR09097K
  12. Fadhli, Y., Rabhi, A., Kanzari, M., "Effect of annealing time and substrates nature on the physical properties of $CuSbS_{2}$ thin films" J. Mater. Sci.: Mater. Electron, Vol. 25, pp. 4767-4773, 2014. https://doi.org/10.1007/s10854-014-2231-5
  13. Ramasamy, K., Sims, H.,Butler, W. H., Gupta, A., "Selective nanocrystal synthesis and calculated electronic structure of all four phases of Copper-Antimony-Sulfide" Chem. Mater. Vol. 26, pp. 2891-2899, 2014. https://doi.org/10.1021/cm5005642
  14. Xue, D-J., Yang, B., Yuan, Z.-K., Wang, G., Liu, X., Zhou, Y., Hu, L., Pan, D., Chen, S., Tang, J., "$CuSbSe_{2}$ as a potential photovoltaic absorber material: studies from theory to experiment" Adv. Energy Mater. Vol. 5, pp. 1501203(1)-1501203(9), 2015.
  15. Welch, A. W., Baranowski, L. L., Zawadzki, P., Lany, S., Wolden, C. A., Zakutayev, A., "$CuSbSe_{2}$ photovoltaic devices with 3% efficiency" Appl. Phys. Express, Vol. 8, pp. 082301-1-082301-4, 2015. https://doi.org/10.7567/APEX.8.082301
  16. Baru, S., Ahn, S. J., Ahn, S. K., Yoon, K., Cho, A., "Fabrication and characterization of cost-efficient $CuSbS_{2}$ thin film solar cells using hybrid inks" Sol. Energy Mater. Sol. Cells, Vol. 151, pp. 14-23, 2016. https://doi.org/10.1016/j.solmat.2016.02.013
  17. Wan, L., Ma, C., Hu, K., Zhou, R., Mao, X., Pan, S., Wong, L. H., Xu, J., "Two-stage co-evaporated $CuSbS_{2}$ thin films for solar cells" J. Alloys Compd., Vol. 680, pp. 182-190, 2016. https://doi.org/10.1016/j.jallcom.2016.04.193
  18. Takei, K., Maeda, T., Wada, T., "Crystallographic and optical properties of $CuSbS_{2}$ and $CuSb(S_{11-xSex)_{2}$" Thin Solid Films, Vol. 582, pp. 263-268, 2015. https://doi.org/10.1016/j.tsf.2014.11.029
  19. Zhang, H., Xu, Q., Tan, G., "Physical preparation and optical properties of $CuSbS_{2}$ nanocrystals by mechanical alloying process" Electron. Mater. Lett., Vol. 12, No. 5, pp. 568-573, 2016. https://doi.org/10.1007/s13391-016-6075-4
  20. Ramasamy, K., Qupta, R. K., Palchoudhury, S., Ivanov, S., Gupta, A., "Layer-structured copper antimony chalcogenides ($CuSbSexS_{2}$-x): stable electrode materials for supercapacitors" Chem. Mater. Vol. 27, pp. 379-386, 2015. https://doi.org/10.1021/cm5041166
  21. Sepelak, V., Duvel, A., Wilkening, M., Becker, K.-D., Heitjans, P., "Mechanochemical reactions and syntheses of oxides" Chem. Soc. Rev., Vol. 42, pp. 7507-7520, 2013. https://doi.org/10.1039/c2cs35462d
  22. Friscic, T., Halasz, T., Beldon, P. J., Belenguer, A. M., Adams, F., Kimber, S. A. J., Honkimaki, V., Dinnebier, R. E., "Real-time and in situ monitoring of mechanochemical milling reactions" Nat. Chem. Vol. 5, pp. 66-73, 2013. https://doi.org/10.1038/nchem.1505
  23. Aquino, J. A. R., Vela, D. L. R., Shaji, S., Avellaneda, D. A., Krishnan, B., "Spray pyrolysed thin films of copper antimony sulfide as photovoltaic absorber" Phys. Status Solidi C, Vol. 13, No. 1, pp. 24-29, 2016. https://doi.org/10.1002/pssc.201510102
  24. Bake, J., Kumar, R. S., Sneed, D., Connolly, A., Zhang, Y., Velisavljevic, N., Paladugu, J., Pravica, M., Chen, C., Cornelius, A., Zhao, Y., "Pressure induced structural transitions in $CuSbS_{2}$ and $CuSbSe_{2}$ thermoelectric compounds" J. Alloys Compd., Vol. 643, pp. 186-194, 2015. https://doi.org/10.1016/j.jallcom.2015.04.138
  25. Efthimiopoulos, I., Buchan, C., Wang, Y., "Structural properties of $Sb_{2}S_{3}$ under pressure: evidence of an electronic topological transition" Sci. Rep., Vol. 6, No. 24246, pp. 1-9, 2016. https://doi.org/10.1038/s41598-016-0001-8
  26. Efthimiopoulos, I., Zhang, J., Kucway, M., Park, C., Ewing, R. C., Wang, Y., "$Sb_{2}Se_{3}$ under pressure" Sci. Rep., Vol. 3, No. 2665, pp. 1-7, 2016.
  27. Minceva-Sukarova, B., Najdoskia, M., Grozdanov, I., Chunnilall, C. J., "Raman spectra of thin solid films of some metal sulfides" J. Mol. Struct., Vol. 410-411, pp. 267-270, 1997.
  28. Tanaka, T., Sueishi, T., Saito, K., Guo, Q., Nishio, M., Yu, K. M., Walukiewicz, W., "Existence and removal of Cu2Se second phase in coevaporated $Fe_{2}GeS_{4}$ thin films" J. Appl. Phys., Vol. 111, pp. 053522-1-053522-4, 2012. https://doi.org/10.1063/1.3691964
  29. Tauc, J., Grigorovici, R., Vancu, A., "Optical properties and electronic structure of amorphous germanium" Phys. Stat. Sol., Vol. 15, pp. 627-637, 1966. https://doi.org/10.1002/pssb.19660150224