• Title/Summary/Keyword: nanocrystallites

Search Result 49, Processing Time 0.028 seconds

Modification of Hydroxyapatite-gelatin Nanocomposite using Side Group Reaction of Ca2+-RCOO-

  • Chang, Myung-Chul;Yang, Hae-Kwon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.72-77
    • /
    • 2012
  • In the preparation of a hydroxyapatite [HAp]/gelatin [GEL] nanocomposite, the GEL matrix in aqueous solution of $H_3PO_4$ was modified by the introduction of aspartic acid [Asp], asparagine [Asn], and glycine [Gly]. The addition of Asp, Asn and Gly greatly affected the slurry formation of HAp/GEL nanocomposite and the resulting dry body showed variations in toughness with the addition of the different amino acids. The introduction of Asn into HAp/GEL nanocomposite was effective for producing the organic-inorganic interaction between HAp and GEL, and caused the increase of toughness. The formation reaction of the modified HAP/GEL nanocomposites was investigated by using XRD and FT-IR. The organic-organic interaction between the GEL matrix and the additives of Asp, Asn and Gly was confirmed from FT-IR analysis, and the organic-inorganic interaction between HAp nanocrystallites and the modified GEL matrix was also discussed, using FT-IR spectra patterns. Nanocrystallites of HAp were covalently bound with the GEL macromolecules and differently influenced by the modification species of Asp, Asn, and Gly.

Microstructure and Characterization of Ni-C Films Fabricated by Dual-Source Deposition System

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.293-297
    • /
    • 2016
  • Ni-C composite films were prepared by co-deposition using a combined technique of plasma CVD and ion beam sputtering deposition. Depending on the deposition conditions, Ni-C thin films manifested three kinds of microstructure: (1) nanocrystallites of non-equilibrium carbide of nickel, (2) amorphous Ni-C film, and (3) granular Ni-C film. The electrical resistivity was also found to vary from about $10^2{\mu}{\Omega}cm$ for the carbide films to about $10^4{\mu}{\Omega}cm$ for the amorphous Ni-C films. The Ni-C films deposited at ambient temperatures showed very low TCR values compared with that of metallic nickel film, and all the films showed ohmic characterization, even those in the amorphous state with very high resistivity. The TCR value decreased slightly with increasing of the flow rate of $CH_4$. For the films deposited at $200^{\circ}C$, TCR decreased with increasing $CH_4$ flow rate; especially, it changed sign from positive to negative at a $CH_4$ flow rate of 0.35 sccm. By increasing the $CH_4$ flow rate, the amorphous component in the film increased; thus, the portion of $Ni_3C$ grains separated from each other became larger, and the contribution to electrical conductivity due to thermally activated tunneling became dominant. This also accounts for the sign change of TCR when the filme was deposited at higher flow rate of $CH_4$. The microstructures of the Ni-C films deposited in these ways range from amorphous Ni-C alloy to granular structures with $Ni_3C$ nanocrystallites. These films are characterized by high resistivity and low TCR values; the electrical properties can be adjusted over a wide range by controlling the microstructures and compositions of the films.

Variation in the Nanostructural Features of the nc-Si:H Thin Films with Substrate Temperature (수소화된 나노결정 실리콘 박막의 기판온도에 따른 나노구조 변화)

  • Nam, Hee-Jong;Son, Jong-Ick;Cho, Nam-Hee
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.359-365
    • /
    • 2013
  • We investigated the nanostructural, chemical and optical properties of nc-Si:H films according to deposition conditions. Plasma enhanced chemical vapor deposition(PECVD) techniques were used to produce nc-Si:H thin films. The hydrogen dilution ratio in the precursors, [$SiH_4/H_2$], was fixed at 0.03; the substrate temperature was varied from room temperature to $600^{\circ}C$. By raising the substrates temperature up to $400^{\circ}C$, the nanocrystalite size was increased from ~2 to ~7 nm and the Si crystal volume fraction was varied from ~9 to ~45% to reach their maximum values. In high-resolution transmission electron microscopy(HRTEM) images, Si nanocrystallites were observed and the crystallite size appeared to correspond to the crystal size values obtained by X-ray diffraction(XRD) and Raman Spectroscopy. The intensity of high-resolution electron energy loss spectroscopy(EELS) peaks at ~99.9 eV(Si $L_{2,3}$ edge) was sensitively varied depending on the formation of Si nanocrystallites in the films. With increasing substrate temperatures, from room temperature to $600^{\circ}C$, the optical band gap of the nc-Si:H films was decreased from 2.4 to 1.9 eV, and the relative fraction of Si-H bonds in the films was increased from 19.9 to 32.9%. The variation in the nanostructural as well as chemical features of the films with substrate temperature appears to be well related to the results of the differential scanning calorimeter measurements, in which heat-absorption started at a substrate temperature of $180^{\circ}C$ and the maximum peak was observed at ${\sim}370^{\circ}C$.

The Effect of Boron Content and Deposition Temperature on the Microstructure and Mechanical Property of Ti-B-C Coating Prepared by Plasma-enhanced Chemical Vapor Deposition (PECVD법에 의해 증착된 Ti-B-C코팅막 내의 보론함량과 증착온도에 따른 미세구조 및 기계적 물성의 변화)

  • Ok, Jung-Tae;Song, Pung-Keun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.106-111
    • /
    • 2005
  • Ternary Ti-B-C coatings were synthesized on WC-Co and Si wafers substrates by a PECVD technique using a gaseous mixture of $TiCl_4,\;BCl_3,\;CH_4,\;Ar,\;and\; H_2$. The effects of deposition variables such as substrate temperature, gas ratio, $R_x=[BCl_3/(CH_4+BCl_3)]$ on the microstructure and mechanical properties of Ti-B-C coatings were investigated. From our instrumental analyses, the synthesized Ti-B-C coatings was confirmed to be composites consisting of nanocrystallites TiC, quasi-amorphous TiB2, and amorphous carbon at low boron content, on the contrary, nanocrystallites $TiB_2$, quasi-amorphous TiC, and amorphous carbon at relatively high boron content. The microhardness of the Ti-B-C coatings increased from $\~23 GPa$ of TiC to $\~38 GPa$ of $Ti_{0.33}B_{0.55}C_{0.11}$ coatings with increasing the boron content. The $Ti_{0.33}B_{0.55}C_{0.11}$ coatings showed lower average friction coefficient of 0.45, in addition, it showed relatively better wear behavior compared to other binary coatings of $TiB_2$ and TiC. The microstruture and microhardness value of Ti-B-C coatings were largely depend on the deposition temperature.

Effects of oxygen additive on structural properties and metal/diamond junction characteristics of nano-crystalline diamond thin films (산소첨가가 나노결정 다이아몬드 박막의 구조적 물성 및 금속과의 접합특성에 미치는 영향)

  • Choi, Sung-Ho;Park, Jae-Hyun;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1700-1702
    • /
    • 2004
  • Diamond films including nanocrystallites are grown by microwave plasma chemical vapor deposition using $O_2$ additives and negative substrate bias at growth step. Effects of growth parameters on film properties are characterized by Raman spectra, SEM, and AFM images. It is found that the surface roughness and the microstructure of grown films can be controlled by changing $O_2$ gas ratio. The I-V characteristics are also investigated in terms of growth conditions of diamond films. The surface roughness and the $sp^2$ phase of the grown diamond films turn out to be crucial factors for reducing leakage currents at diamond/metal interfaces.

  • PDF

Preparation and Characterization of Spherical Carbon Composite for Use as Anode Material for Lithium Ion Batteries

  • Ahn, Byoung-Hoon;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1331-1335
    • /
    • 2010
  • A novel spherical carbon composite material, in which nanosized disordered carbons are dispersed in a soft carbon matrix, has been prepared and investigated for use as a potential anode material for lithium ion batteries. Disordered carbons were synthesized by ball milling natural graphite in air. The composite was prepared by mixing the ball-milled graphite with petroleum pitch powder, pelletizing the mixture, and pyrolyzing the pellets at $1200^{\circ}C$ in an argon flow. The ballmilled graphite consists of distorted nanocrystallites and amorphous phases. In the composite particle, nanosized flakes are uniformly distributed in a soft carbon matrix, as revealed by X-ray diffractometer (XRD) and transmission electron microscopy (TEM) experiments. The composite is compatible with a pure propylene carbonate (PC) electrolyte and shows high rate capability and excellent cycling performance. The electrochemical properties are comparable to those of hard carbon.

Effect of Annealing Temperature on the Luminescence of Si Nanocrystallites Thin Flms Fabricated by Pulsed Laser Deposilion (펄스 레이저 증착법을 이용한 실리콘 박막의 어닐링 온도 변화에 따른 발광 특성연구)

  • 김종훈;전경아;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.127-130
    • /
    • 2001
  • Si thin films on p-type (100) Si substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was 1 Torr. After deposition, Si thin film has been annealed again at 400-840$^{\circ}C$ in nitrogen ambient. Strong blue photoluminescence (PL) have been observed at room temperature. We report the PL properties of Si thin films depending on the variation of the annealing temperature.

  • PDF

The synthesis of Highly Crystalline and monodisperse maghemite and zirconia Nanocrystallites without size-selection process

  • Park, Jong-Nam;Joo, Jin;Yoo, Tae-kyung;Na, Hyun-Bin;Lee, Soo-Sung;Park, Hyun-Min;Kim, Young-Woon;Hyun, Taek-Hwan
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.20-20
    • /
    • 2003
  • A new and simple method has been developed to synthesize highly crystalline and monodisperse maghemite (γ-Fe₂O₃) and zirconia (ZrO₂) nanocristallites. High temperature aging of metal-surfactant complex was founded to generate monodisperse nanoparticles, wherein the nuclei were prepared by the thermal decomposition of iron-oleate complex in case of iron oxide and nonhydrolytic sol-gel reaction in case of zirconia respectively. By varying the experimental conditions, in other words concentration of surfactants, kind of metal precursor, reaction temperature and so on, the diameter of spherical nanoparticles could be controlled at various size. The synthesized nanoparticles were characterized by electron diffraction, X-ray diffraction, and low- and high-resolution transmission electron microscope.

  • PDF

Effect of Annealing Temperature on the Luminescence of Si Nanocrystallites Thin Films Prepared by Pulsed Laser Deposition (펄스 레이저 증착법으로 성장된 실리콘 박막의 어닐링 온도 변화에 따른 발광 특성연구)

  • 김종훈;전경아;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.75-78
    • /
    • 2002
  • Si thin films on p-type (100) Si substrate have been prepared by a pulsed laser deposition technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was 1 Torr. After deposition, Si thin film has been annealed again at 400-840$^{\circ}C$ in nitrogen ambient. Strong blue photoluminescence (PL) have been observed at room temperature. We report the PL properties of Si thin films with the variation of the annealing temperature.

Variation of the Nanostructural and Optical Features of Porous Silicon with pH Conditions (pH 조건에 따른 기공성 실리콘의 나노구조 및 광학적 특성의 변화)

  • Kim, Hyo-Han;Cho, Nam-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.294-300
    • /
    • 2013
  • The effect of chemical treatments of porous silicon in organic solvents on its nanostructural and optical features was investigated. When the porous Si was dipped in the organic solvent with various PH values, the morphological, chemical, and structural properties of the porous silicon was sensitively affected by the chemical conditions of the solvents. The size of silicon nanocrystallites in the porous silicon decreased from 5.4 to 3.1 nm with increasing pH values from 1 to 14. After the samples were dipped in the organic solvents, the Si-O-H bonding intensity was increased while that of Si-H bonding decreased. Photoluminescence peaks shifted to a shorter wavelength region in the range of 583 to 735 nm as the pH value increased. PL intensity was affected by the size as well as the volume fraction of the nanocrystalline silicon in the porous silicon.