Browse > Article

The Effect of Boron Content and Deposition Temperature on the Microstructure and Mechanical Property of Ti-B-C Coating Prepared by Plasma-enhanced Chemical Vapor Deposition  

Ok, Jung-Tae (School of Material Science and Engineering, Pusan National University)
Song, Pung-Keun (School of Material Science and Engineering, Pusan National University)
Kim, Kwang-Ho (School of Material Science and Engineering, Pusan National University)
Publication Information
Journal of the Korean institute of surface engineering / v.38, no.3, 2005 , pp. 106-111 More about this Journal
Abstract
Ternary Ti-B-C coatings were synthesized on WC-Co and Si wafers substrates by a PECVD technique using a gaseous mixture of $TiCl_4,\;BCl_3,\;CH_4,\;Ar,\;and\; H_2$. The effects of deposition variables such as substrate temperature, gas ratio, $R_x=[BCl_3/(CH_4+BCl_3)]$ on the microstructure and mechanical properties of Ti-B-C coatings were investigated. From our instrumental analyses, the synthesized Ti-B-C coatings was confirmed to be composites consisting of nanocrystallites TiC, quasi-amorphous TiB2, and amorphous carbon at low boron content, on the contrary, nanocrystallites $TiB_2$, quasi-amorphous TiC, and amorphous carbon at relatively high boron content. The microhardness of the Ti-B-C coatings increased from $\~23 GPa$ of TiC to $\~38 GPa$ of $Ti_{0.33}B_{0.55}C_{0.11}$ coatings with increasing the boron content. The $Ti_{0.33}B_{0.55}C_{0.11}$ coatings showed lower average friction coefficient of 0.45, in addition, it showed relatively better wear behavior compared to other binary coatings of $TiB_2$ and TiC. The microstruture and microhardness value of Ti-B-C coatings were largely depend on the deposition temperature.
Keywords
PECVD; Ti-B-C coatings; Nanocomposite; Microstructure; Depositon temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. B. Choi, K. Cho, M.-H. Lee, K. H. Kim, Thin Solid Films, 447-448 (2004) 365-370   DOI   ScienceOn
2 D.-S. Han, P. K. Song, K.-M. Cho, Y. H. Park, K. H. Kim; Surf. Coat. Technol., 188-189 (2004) 446-451   DOI   ScienceOn
3 R. Kullmer, C. Lugmair, A. Figueras, J. Bassas, M. Stoiber, C. Mitterer, Surf. Coat. Technol., 174-175 (2003) 1229-1233   DOI   ScienceOn
4 S. Veprek, S. Reiprich, Thin Solid Films, 268 (1995) 64-71   DOI   ScienceOn
5 J. Vetter, E. Lugscheider, S. S. Guerreiro, Surf. Coat. Technol., 98 (1998) 1233-1239   DOI   ScienceOn
6 J. M. Lackner, W. Waldhauser, R. Ebner, Surf. Coat. Technol., 188-189 (2004) 519-524   DOI   ScienceOn
7 S. Veprek, J. Vac. Sci. Technol., A, Vac. Surf. Films 17 (1999) 2401   DOI
8 Q. G. Zhou, X. D. Bai, X. Y. Xue, X. W. Chen, J. Xu, D. R. Wang, Surf. Coat. Technol., 191 (2005)212-215   DOI   ScienceOn
9 A. Lasalmonie, J. L. Strudel, J. Mater. Sci. 21 (1986) 1837   DOI   ScienceOn
10 I.-W. Park, S. R. Choi, J. H. Suh, C. G. Park, K. H. Kim, Thin Solid Films, 447-448 (2004) 443-448   DOI   ScienceOn
11 H. Watanabe, Y. Sato, C. Nie, A. Ando, S. Ohtani, N. Iwamoto, Surf. Coat. Technol., 169-170 (2003) 452-455   DOI   ScienceOn
12 T. P. Mollart, M. Baker, J. Haupt, A. Steiner, P. Hammer, W. Gissler, Surf. Coat. Technol., 74-75 (1995) 491-496   DOI   ScienceOn
13 J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc, Minnesota, (1995) 216-240
14 J. H. Park, W. S. Chung, Y.-R. Cho, K. H. Kim, Surf. Coat. Technol., 188-189 (2004) 425-430   DOI   ScienceOn
15 M. J. Son, S. S. Kang, E. A. Lee, K. H. Kim, J. Mater. Process. Technol., 130-131 (2002) 145   DOI   ScienceOn
16 Y. H. Lu, Z. F. Zhou, P. Sit, Y. G. Shen, K. Y. Li, H. Chen, Surf. Coat. Technol., 187 (2004) 98-105   DOI   ScienceOn
17 C. Mitterer, P. H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P. N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vlcek, Surf. Coat. Technol., 120-121 (1999) 405-411   DOI   ScienceOn
18 P. Karvankova, M. G. J. Vepret-Heijman, O. Zindulka, A. Bergmaier, S. Veprek, Surf. Coat. Technol., 163-164 (2003) 149-156   DOI   ScienceOn