DOI QR코드

DOI QR Code

Variation in the Nanostructural Features of the nc-Si:H Thin Films with Substrate Temperature

수소화된 나노결정 실리콘 박막의 기판온도에 따른 나노구조 변화

  • Nam, Hee-Jong (Department of Materials Science and Engineering, Inha University) ;
  • Son, Jong-Ick (Department of Materials Science and Engineering, Inha University) ;
  • Cho, Nam-Hee (Department of Materials Science and Engineering, Inha University)
  • 남희종 (인하대학교 신소재공학과) ;
  • 손종익 (인하대학교 신소재공학과) ;
  • 조남희 (인하대학교 신소재공학과)
  • Received : 2013.06.07
  • Accepted : 2013.07.13
  • Published : 2013.07.27

Abstract

We investigated the nanostructural, chemical and optical properties of nc-Si:H films according to deposition conditions. Plasma enhanced chemical vapor deposition(PECVD) techniques were used to produce nc-Si:H thin films. The hydrogen dilution ratio in the precursors, [$SiH_4/H_2$], was fixed at 0.03; the substrate temperature was varied from room temperature to $600^{\circ}C$. By raising the substrates temperature up to $400^{\circ}C$, the nanocrystalite size was increased from ~2 to ~7 nm and the Si crystal volume fraction was varied from ~9 to ~45% to reach their maximum values. In high-resolution transmission electron microscopy(HRTEM) images, Si nanocrystallites were observed and the crystallite size appeared to correspond to the crystal size values obtained by X-ray diffraction(XRD) and Raman Spectroscopy. The intensity of high-resolution electron energy loss spectroscopy(EELS) peaks at ~99.9 eV(Si $L_{2,3}$ edge) was sensitively varied depending on the formation of Si nanocrystallites in the films. With increasing substrate temperatures, from room temperature to $600^{\circ}C$, the optical band gap of the nc-Si:H films was decreased from 2.4 to 1.9 eV, and the relative fraction of Si-H bonds in the films was increased from 19.9 to 32.9%. The variation in the nanostructural as well as chemical features of the films with substrate temperature appears to be well related to the results of the differential scanning calorimeter measurements, in which heat-absorption started at a substrate temperature of $180^{\circ}C$ and the maximum peak was observed at ${\sim}370^{\circ}C$.

Keywords

References

  1. M. A. Green, K. Emery, Y. Hishikawa, and W. Wart, Prog. Photovolt: Res. Appl., 18, 346 (2010). https://doi.org/10.1002/pip.1021
  2. S. W. Park, E. C. Cho, D. Y. Song, G. Conibeer and M. A. Green, Sol. Energ. Mater. Sol. Cell, 93, 684 (2009). https://doi.org/10.1016/j.solmat.2008.09.032
  3. M. A. Green, Prog. Photovolt: Res. Appl., 9, 123 (2001). https://doi.org/10.1002/pip.360
  4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog. Photovolt: Res. Appl., 20, 12 (2012). https://doi.org/10.1002/pip.2163
  5. H. J. Nam, J. I. Son and N. H. Cho, Jpn. J. Appl. Phys. 52, 01AD06 52 (2013).
  6. J. H. Shim, E. H. Lee, H. S. Lee and N. H. Cho, J. Mater. Res., 23(3), 790 (2008). https://doi.org/10.1557/JMR.2008.0092
  7. J. I. Son, H. H. Kim and N. H. Cho, J. Kor. Phys. Soc., 58(5), 1384 (2011). https://doi.org/10.3938/jkps.58.1384
  8. J. I. Son, H. J. Nam and N. H. Cho, J. Nanosci. Nanotechnol., 12, 1 (2012). https://doi.org/10.1166/jnn.2012.5111
  9. A. V. Hernandez and T. V. Torchynska, J. Phys., 61, 1231 (2007).
  10. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures, p. 656, Wiley-interscience, New York, USA (1954).
  11. J. I. Langford and A. J. C. Wilson, J. Appl. Cryst., 11, 102 (1978). https://doi.org/10.1107/S0021889878012844
  12. Y. He, C. Yin, G. Cheng, L. Wang, X. Liu and G. Y. Hu, J. Appl. Phys., 75, 797 (1994). https://doi.org/10.1063/1.356432
  13. P. Gupta, V. L. Colvin and S. M. George, Phys. Rev. B, 37, 8234 (1988). https://doi.org/10.1103/PhysRevB.37.8234
  14. M. Schade, N. Geyer, B. Fuhrmann, F. Heyroth and H. S. Leipner, Appl. Phys. A, 95(2), 325 (2009). https://doi.org/10.1007/s00339-009-5101-x
  15. F. Shoji and M. Tatsuro, Phys. Rev. B, 38, 5726 (1988). https://doi.org/10.1103/PhysRevB.38.5726
  16. D. Chen and T. Yamamoto, IEEE-Nano 3rd Conference, p. 52 (2003).
  17. S. Agarwal, M. S. Valipa, B. Hoex, M. C. M. van de Sanden, D. Maroudas and E. S. Aydil, Surf. Sci., 598, 35 (2005). https://doi.org/10.1016/j.susc.2005.09.026
  18. B. G. Budaguan, A. A. Aivazov, M. N. Meytin, A. Yu. Sazonov and J. W. Metselaar, Phys. B, 252, 198 (1998). https://doi.org/10.1016/S0921-4526(98)00151-3