Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.7.359

Variation in the Nanostructural Features of the nc-Si:H Thin Films with Substrate Temperature  

Nam, Hee-Jong (Department of Materials Science and Engineering, Inha University)
Son, Jong-Ick (Department of Materials Science and Engineering, Inha University)
Cho, Nam-Hee (Department of Materials Science and Engineering, Inha University)
Publication Information
Korean Journal of Materials Research / v.23, no.7, 2013 , pp. 359-365 More about this Journal
Abstract
We investigated the nanostructural, chemical and optical properties of nc-Si:H films according to deposition conditions. Plasma enhanced chemical vapor deposition(PECVD) techniques were used to produce nc-Si:H thin films. The hydrogen dilution ratio in the precursors, [$SiH_4/H_2$], was fixed at 0.03; the substrate temperature was varied from room temperature to $600^{\circ}C$. By raising the substrates temperature up to $400^{\circ}C$, the nanocrystalite size was increased from ~2 to ~7 nm and the Si crystal volume fraction was varied from ~9 to ~45% to reach their maximum values. In high-resolution transmission electron microscopy(HRTEM) images, Si nanocrystallites were observed and the crystallite size appeared to correspond to the crystal size values obtained by X-ray diffraction(XRD) and Raman Spectroscopy. The intensity of high-resolution electron energy loss spectroscopy(EELS) peaks at ~99.9 eV(Si $L_{2,3}$ edge) was sensitively varied depending on the formation of Si nanocrystallites in the films. With increasing substrate temperatures, from room temperature to $600^{\circ}C$, the optical band gap of the nc-Si:H films was decreased from 2.4 to 1.9 eV, and the relative fraction of Si-H bonds in the films was increased from 19.9 to 32.9%. The variation in the nanostructural as well as chemical features of the films with substrate temperature appears to be well related to the results of the differential scanning calorimeter measurements, in which heat-absorption started at a substrate temperature of $180^{\circ}C$ and the maximum peak was observed at ${\sim}370^{\circ}C$.
Keywords
PECVD; nc-Si:H; substrate temperature; FT-IR; EELS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. A. Green, K. Emery, Y. Hishikawa, and W. Wart, Prog. Photovolt: Res. Appl., 18, 346 (2010).   DOI   ScienceOn
2 S. W. Park, E. C. Cho, D. Y. Song, G. Conibeer and M. A. Green, Sol. Energ. Mater. Sol. Cell, 93, 684 (2009).   DOI   ScienceOn
3 M. A. Green, Prog. Photovolt: Res. Appl., 9, 123 (2001).   DOI   ScienceOn
4 M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog. Photovolt: Res. Appl., 20, 12 (2012).   DOI   ScienceOn
5 H. J. Nam, J. I. Son and N. H. Cho, Jpn. J. Appl. Phys. 52, 01AD06 52 (2013).
6 J. H. Shim, E. H. Lee, H. S. Lee and N. H. Cho, J. Mater. Res., 23(3), 790 (2008).   DOI   ScienceOn
7 J. I. Son, H. H. Kim and N. H. Cho, J. Kor. Phys. Soc., 58(5), 1384 (2011).   DOI   ScienceOn
8 J. I. Son, H. J. Nam and N. H. Cho, J. Nanosci. Nanotechnol., 12, 1 (2012).   DOI
9 A. V. Hernandez and T. V. Torchynska, J. Phys., 61, 1231 (2007).
10 H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures, p. 656, Wiley-interscience, New York, USA (1954).
11 J. I. Langford and A. J. C. Wilson, J. Appl. Cryst., 11, 102 (1978).   DOI
12 Y. He, C. Yin, G. Cheng, L. Wang, X. Liu and G. Y. Hu, J. Appl. Phys., 75, 797 (1994).   DOI   ScienceOn
13 P. Gupta, V. L. Colvin and S. M. George, Phys. Rev. B, 37, 8234 (1988).   DOI   ScienceOn
14 M. Schade, N. Geyer, B. Fuhrmann, F. Heyroth and H. S. Leipner, Appl. Phys. A, 95(2), 325 (2009).   DOI
15 F. Shoji and M. Tatsuro, Phys. Rev. B, 38, 5726 (1988).   DOI   ScienceOn
16 D. Chen and T. Yamamoto, IEEE-Nano 3rd Conference, p. 52 (2003).
17 S. Agarwal, M. S. Valipa, B. Hoex, M. C. M. van de Sanden, D. Maroudas and E. S. Aydil, Surf. Sci., 598, 35 (2005).   DOI   ScienceOn
18 B. G. Budaguan, A. A. Aivazov, M. N. Meytin, A. Yu. Sazonov and J. W. Metselaar, Phys. B, 252, 198 (1998).   DOI   ScienceOn