• 제목/요약/키워드: nanocomposite film

검색결과 144건 처리시간 0.024초

Antibacterial Properties of TiAgN and ZrAgN Thin Film Coated by Physical Vapor Deposition for Medical Applications

  • Kang, Byeong-Mo;Lim, Yeong-Seog;Jeong, Woon-Jo;Kang, Byung-Woo;Ahn, Ho-Geun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권5호
    • /
    • pp.275-278
    • /
    • 2014
  • We deposited TiAgN and ZrAgN nanocomposite coatings on pure Titanium specimens, by using arc ion plating (AIP) with single alloy targets. TiAg ZrAg alloy targets of 5 wt.%, 10 wt.% silver content by vacuum arc remelting (VAR), followed by homogenization for 2 hours at $1,100^{\circ}C$ in non-active Ar gas atmosphere and characterized these samples for morphology and chemical composition. We investigated the biocompatibility of TiAg and ZrAg alloys by examining the proliferation of L929 fibroblast cells by MTT test assay, after culturing the cells ($4{\times}10^4cells/cm^2$) for 24 hours; and exploring the antibacterial properties of thin films by culturing Streptococus Mutans (KCTC3065), using paper disk techniques. Our results showed no cytotoxic effects in any of the specimens, but the antibacterial effects against Streptococus Mutans appeared only in the 10 wt.% silver content specimens.

Pt 나노입자가 분산된 SiO2 박막의 저항-정전용량 관계 (Relation between Resistance and Capacitance in Atomically Dispersed Pt-SiO2 Thin Films for Multilevel Resistance Switching Memory)

  • 최병준
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.429-434
    • /
    • 2015
  • Resistance switching memory cells were fabricated using atomically dispersed Pt-$SiO_2$ thin film prepared via RF co-sputtering. The memory cell can switch between a low-resistance-state and a high-resistance-state reversibly and reproducibly through applying alternate voltage polarities. Percolated conducting paths are the origin of the low-resistance-state, while trapping electrons in the negative U-center in the Pt-$SiO_2$ interface cause the high-resistance-state. Intermediate resistance-states are obtained through controlling the compliance current, which can be applied to multi-level operation for high memory density. It is found that the resistance value is related to the capacitance of the memory cell: a 265-fold increase in resistance induces a 2.68-fold increase in capacitance. The exponential growth model of the conducting paths can explain the quantitative relationship of resistance-capacitance. The model states that the conducting path generated in the early stage requires a larger area than that generated in the last stage, which results in a larger decrease in the capacitance.

하이브리드 코팅에 의한 고경도 소재용 Ti-Al-Si-N코팅 엔드밀의 절삭성능평가 (Cutting Performance of Ti-Al-Si-N Coated Endmill for High-Hardened materials by Hybrid Coating System)

  • 김경중;강명창;이득우;김정석;김광호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.89-94
    • /
    • 2003
  • Hard coatings are known to improve the performance of cutting tools in aggressive machining applications, such as high speed machining. New superhard Ti-Al-Si-W films, characterized by a nanocomposite nano-sized (Ti,Al,Si)N crystallites embedded in amorphous $Si_3 N_4$ matrix, could be successfully synthesized on WC-Co substrates by a hybrid coating system of arc ion plating(AIP) and sputtering method. The hardness of Ti-Al-Si-N film increased with incorporation of Si, and had the maximum value ~50 GPa at the Si content of 9 at.%, respectively. And the X-ray diffraction patterns of Ti-Al-Si-N films with various Si content is investigated. In this study, Ti-Al-Si-N coatings were applied to end-mill tools made of WC-Co material by a hybrid coating system. Cutting tests fir the high-hardened material (STD11,$H_R$)C62 and their performances in high speed cutting conditions were studied. Also, the tool wear and tool lift of Ti-Al-Si-N with various si(6, 9, 19) contents were measured.

  • PDF

The ethanol sensors made from α-Fe2O3 decorated with multiwall carbon nanotubes

  • Aroutiounian, Vladimir M.;Arakelyan, Valeri M.;Shahnazaryan, Gohar E.;Aleksanyan, Mikayel S.;Hernadi, Klara;Nemeth, Zoltan;Berki, Peter;Papa, Zsuzsanna;Toth, Zsolt;Forro, Laszlo
    • Advances in nano research
    • /
    • 제3권1호
    • /
    • pp.1-11
    • /
    • 2015
  • Thin film ethanol sensors made from ${\alpha}-Fe_2O_3$ decorated with multiwall carbon nanotubes(MWCNTs) were manufactured by the electron beam deposition method. The morphology of the decorated ${\alpha}-Fe_2O_3$/MWCNTs (25:1 weight ratios) nanocomposite powder was investigated using the scanning electron microscopy and X-ray diffraction techniques. The thickness of thin films has been determined from ellipsometric measurements. The response of manufactured sensors was investigated at different temperatures of the sensor work body and concentration of gas vapors. Good response of prepared sensors to ethanol vapors already at work body temperature of $150^{\circ}C$ was shown.

Carbon Nanotube/Nafion Composites for Biomimetic Artificial Muscle Actuators

  • Lee, Se-Jong;Yoon, Hyun-Woo;Lee, Deuk-Yong
    • 한국세라믹학회지
    • /
    • 제44권4호
    • /
    • pp.198-201
    • /
    • 2007
  • Multi-walled carbon nanotube (M-CNT)/Nafion nanocomposites were prepared by solution casting to elucidate the effect of M-CNT addition, from 0 to 7 wt%, on the viscoelastic behavior of the composites. The M-CNT bundles induced by the Nafion polymer were determined to be uniformly distributed for the 1 wt% M-CNT/Nafion nanocomposites. The 1 wt% M-CNT/Nafion composite exhibited the highest blocking stress of 2.3 kPa due to its high elastic modulus of 0.485 GPa. From a dynamic mechanical analysis, the 1 wt% M-CNT had the highest storage and loss moduli compared with the other samples in all frequency and temperature ranges. From the storage modulus data, the M-CNT loaded composites had similar $T_g$ values near $120^{\circ}C$. The glass transition temperatures of the M-CNT loaded composites were $120^{\circ}C$ (1 wt%), $117^{\circ}C$ (3 wt%), $117^{\circ}C$ (5 wt%), and $135^{\circ}C$ (7 wt%), suggesting that the effect of the M-CNTs on the Nafion film begins at 1 wt%. Thus, it has been concluded that the 1 wt% M-CNT disported composite is attractive for actuator applications.

A Review of Epitaxial Metal-Nitride Films by Polymer-Assisted Deposition

  • Luo, Hongmei;Wang, Haiyan;Zou, Guifu;Bauer, Eve;Mccleskey, Thomas M.;Burrell, Anthony K.;Jia, Quanxi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.54-60
    • /
    • 2010
  • Polymer-assisted deposition is a chemical solution route to high quality thin films. In this process, the polymer controls the viscosity and binds metal ions, resulting in a homogeneous distribution of metal precursors in the solution and the formation of crack-free and uniform films after thermal treatment. We review our recent effort to epitaxially grow metal-nitride thin films, such as hexagonal GaN, cubic TiN, AlN, NbN, and VN, mixed-nitride $Ti_{1-x}Al_xN$, ternary nitrides tetragonal $SrTiN_2$, $BaZrN_2$, and $BaHfN_2$, hexagonal $FeMoN_2$, and nanocomposite TiN-$BaZrN_2$.

Cu 첨가가 Mo-Cu-N 코팅의 미세구조와 기계적 특성에 미치는 영향 (Effects of Cu Addition on Microstructural and Mechanical Properties of Mo-Cu-N Coatings)

  • 김수빈;윤혜원;이한찬;문경일;홍현선
    • 한국표면공학회지
    • /
    • 제52권4호
    • /
    • pp.227-232
    • /
    • 2019
  • Mo-N based coatings have been studied for enhancing mechanical characteristics of thin films. In the case of Mo-X-N coatings, the microstructure and mechanical properties can be affected by the addition of the third element. In this work, Mo-Cu-N coatings were successfully fabricated with varying the Cu content from 4.5 at% to 31 at% by the co-sputtering method. Thus, properties of the coatings were analyzed by EDS, SEM, XRD, AFM, nano indentation and scratch test techniques. From observed results, MoxN bonds were made in a nitrogen atmosphere and Cu elements were present at grain boundaries. In addition, coatings with the Cu content above 14 at% had a Cu3N peak in the XRD results. Thus, it is suggested that the formation of Cu3N phase affected the microstructure and mechanical properties of Mo-Cu-N coatings. Mechanical properties of Mo-Cu-N coatings were found to be relatively better at Cu content of about 12 at%.

Pharmacological Viewpoint Concerns and Phytochemical Components of Ginseng

  • RANA, Anvi
    • 식품보건융합연구
    • /
    • 제8권5호
    • /
    • pp.21-28
    • /
    • 2022
  • Ginseng is described as the "King of all herbs, "Man-root" or "Root of heaven" and regarded as the most powerful herbal remedy, particularly grown in Korea, China, Japan, Vietnam, and North America. It has been in existence for a long time. The most demanded herbal cure, Ginseng, principally the root, has long been employed in traditional Asian medicine. The extent of availability of bioactive combinations and their impact on the body differs between American and Asian ginseng. Asian ginseng, also known as Panax ginseng, has a more calming influence and is more advantageous than American ginseng, such as Panax quinquefolius. The pharmaceutical aspect of development and extraction with diverse morphological properties is examined. Saponins, glycosides, carbohydrates, polyacetylenes, amino acids, vitamins, volatile oil, enzymes are all present in the Phyto-content of Ginseng. Ginsenosides are saponins that are constituents of the triterpenoid dammarane and have anticancer, anti-cardiovascular, anti-microbial, anti-obesity, anti-inflammatory, and antioxidant properties. Ginseng, in particular, has the possibility to help with microbial invasion, inflammatory processes, oxidative stress, and diabetes. It developed nanoparticles and nanocomposite film technologies as novel drug delivery platforms for cancer, inflammation, and neurological illnesses. Furthermore, it offers a range of applications that will be vital for future growth.

Examining the performance of PAI/ZnO synthesized with diamine and nano particles

  • Jianwei Shi;Xiaoxu Teng
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.201-210
    • /
    • 2023
  • A ZnO/poly (amide-imide) hybrid nanocomposite film with different weight percentages of Zinc oxide (ZnO) nanoparticles is synthesized and characterized in this paper. A two-step reaction successfully synthesized a new kind of heteroaromatic diamine with bulky pendant groups. In order to produce 3, 5-dinitro-3, 3-bis (4-(4-Nitrophenoxy) phenyl) -2- benzofuran-1-one, 3, 3'-bis (4-hydroxyphenyl) benzofuran-1-one and 3'-bis (4-hydroxyphenyl) benzofuran-1-one were combined with 3'-bis (3-hydroxyphenyl) benzofuran-1-one. The obtained dinitro was then reduced by zinc dust and hydrochloric acid. The reaction of 4, 4* carbonyl diphthalic anhydride with amino acid L-alanine in acetic acid leads to the production of very high yields of chiral diacid monomer. As a result of the direct polymerization of these monomers, new optically active polymers were formed (amide-imide). In order to synthesize poly (amide-imide)/ZnO nanocomposites with different weight percentages (2, 4, 6, 8, and 10%), PAI and ZnO nanoparticles were combined using ultrasonication SEM, Fourier transform infrared spectroscopy, X-ray diffraction and thermal gravimetry were used to characterize the PAI films.

표면 개질된 지르코니아를 함유한 유-무기 하이브리드 코팅액으로 도포된 PET 필름의 특성 (Characterization of PET films coated with organic-inorganic hybrid coating system containing surface modified zirconia)

  • 이수;김상엽;김영준
    • 한국응용과학기술학회지
    • /
    • 제35권3호
    • /
    • pp.595-605
    • /
    • 2018
  • 최근 우수한 유연성과 화학적 안정성 등을 가진 고분자 수지와 우수한 기계적 성질 등을 나타내는 무기 재료로 이루어진 나노 복합 시스템으로써 유-무기 하이브리드 코팅 필름에 관한 연구가 활발히 진행되고 있다. 아크릴레이트 단량체로써 사용된 o-phenylphenoxyethyl acrylate (OPPEA)는 1.576의 높은 굴절률을 나타내고, Bisphenol A ethoxylate diacrylate (BAEDA)는 굴절률은 낮지만 경화된 고분자의 경도를 향상시킨다. 또한, 무기 소재로써 사용된 지르코니아는 산화지르코늄으로써 우수한 내구성과 광학특성 등을 나타낸다. 본 연구에서는 광학 특성을 향상시키기 위한 목적으로 아크릴레이트 단량체 중 BAEDA의 함량을 조절하여 필름을 제조한 뒤 연필 경도계와 아베굴절계를 이용하여 광학 특성 변화를 확인하였고, UV-vis spectrophotometer을 이용해 투과도를 비교하여 최적의 조건을 확립하였다. 그리고 실란 커플링제인 ${\gamma}$-methacryloxypropyltrimethoxysilane (MPS)를 사용하여 지르코니아를 소수화 처리하여 아크릴레이트 단량체에 대한 분산성을 향상시키고, 개질 전후의 물에 대한 분산성 변화를 조사하여 물에 대한 친화력이 감소하였음을 확인하였고, FT-IR ATR spectrophotometer를 통해 MPS에 의해 도입된 $1716cm^{-1}$에서의 에스터 C=O 결합 peak의 존재를 통해 MPS에 의한 지르코니아 표면의 개질 반응이 진행되었음을 확인하였다. 또한, 지르코니아의 표면에 도입된 규소 원자의 존재는 X 선 형광법을 이용하여 확인하였다. 그리고 화학적으로 개질된 지르코니아를 아크릴레이트 단량체에 도입하여 광경화 필름을 제조하였을 때, 굴절률은 아크릴레이트 자체 필름보다 1.2% 향상되었음을 확인하였고, SEM/EDS mapping 분석을 통해 PET 필름에 코팅된 개질 후 지르코니아가 아크릴레이트 코팅층에 균일하게 분포되어 있음을 알 수 있었다.