DOI QR코드

DOI QR Code

The ethanol sensors made from α-Fe2O3 decorated with multiwall carbon nanotubes

  • Aroutiounian, Vladimir M. (Centres of Semiconductor Devices and Nanotechnologies, Yerevan State University) ;
  • Arakelyan, Valeri M. (Centres of Semiconductor Devices and Nanotechnologies, Yerevan State University) ;
  • Shahnazaryan, Gohar E. (Centres of Semiconductor Devices and Nanotechnologies, Yerevan State University) ;
  • Aleksanyan, Mikayel S. (Centres of Semiconductor Devices and Nanotechnologies, Yerevan State University) ;
  • Hernadi, Klara (Department of Applied and Environmental Chemistry, University of Szeged) ;
  • Nemeth, Zoltan (Department of Applied and Environmental Chemistry, University of Szeged) ;
  • Berki, Peter (Department of Applied and Environmental Chemistry, University of Szeged) ;
  • Papa, Zsuzsanna (Department of Optics and Quantum Electronics, University of Szeged) ;
  • Toth, Zsolt (Department of Optics and Quantum Electronics, University of Szeged) ;
  • Forro, Laszlo (Laboratory of Physics of Complex Matter, Ecole Polytechnique Federale de Lausanne)
  • Received : 2015.02.10
  • Accepted : 2015.03.24
  • Published : 2015.03.25

Abstract

Thin film ethanol sensors made from ${\alpha}-Fe_2O_3$ decorated with multiwall carbon nanotubes(MWCNTs) were manufactured by the electron beam deposition method. The morphology of the decorated ${\alpha}-Fe_2O_3$/MWCNTs (25:1 weight ratios) nanocomposite powder was investigated using the scanning electron microscopy and X-ray diffraction techniques. The thickness of thin films has been determined from ellipsometric measurements. The response of manufactured sensors was investigated at different temperatures of the sensor work body and concentration of gas vapors. Good response of prepared sensors to ethanol vapors already at work body temperature of $150^{\circ}C$ was shown.

Keywords

Acknowledgement

Supported by : Ministry of Education and Science

References

  1. Adamyan, A.Z., Adamyan, Z.N., Aroutiounian, V.M., Arakelyan, A.H., Touryan, K.J. and Turner, J.A. (2007), "Sol-gel derived thin-film semiconductor hydrogen gas sensor", Int. J. Hydrog. Energy, 32, 4101-4108. https://doi.org/10.1016/j.ijhydene.2007.03.043
  2. Aroutiounian, V.M., Arakelyan, V.M., Khachaturyan, E.A., Shahnazaryan, G.E., Aleksanyan, M.S., Forro, L., Magrez, A., Hernadi, K. and Nemeth, Z. (2012), "Manufacturing and investigations of i-butane sensor made of $SnO_2$/multiwall-carbon-nanotube nanocomposite", Sens. Actuat. B, 173, 890-896. https://doi.org/10.1016/j.snb.2012.04.039
  3. Aroutiounian, V.M., Adamyan, A.Z., Khachaturyan, E.A., Adamyan, Z.N., Hernadi, K., Pallai, Z., Nemeth, Z., Forro, L., Magrez, A. and Horvath, E. (2013a), "Study of the surface-ruthenated $SnO_2$/MWCNTs nanocomposite thick-film gas sensors", Sens. Actuat. B, 177, 308-315. https://doi.org/10.1016/j.snb.2012.10.106
  4. Aroutiounian, V.M. (2013b), "Use of metaloxide, porous silicon and carbon nanotube gas sensors for safety and security", Advanced Sensors for Safety and Security, NATO Science for Peace and Security, Springer, 105-124.
  5. Beckers, N.A., Taschuk, M.T. and Brett, M.J. (2013), "Selective room temperature nanostructured thin film alcohol sensor as a virtual sensor array", Sens. Actuat. B, 176, 1096-1102. https://doi.org/10.1016/j.snb.2012.09.041
  6. Berki, P., Nemeth, Z., Reti, B., Berkesi, O., Magrez, A., Aroutiounian, V., Forro, L. and Hernadi, K. (2013), "Preparation and characterization of multiwalled carbon nanotube/$In_2O_3$ composites", Carbon, 60, 266-272. https://doi.org/10.1016/j.carbon.2013.04.035
  7. Colindres, S.C., Aguir, Kh., Sodi, F.C., Vargas, L.V., Salazar, J.A.M. and Febles, V.G. (2014), "Ozone sensing based on palladium decorated carbon nanotubes", Sensors, 14, 6806-6818. https://doi.org/10.3390/s140406806
  8. Ferlauto, A.S., Ferreira, G.M., Pearce, J.M. Wronski, C.R., Collins, R.W., Deng, X. and Ganguly, G. (2002), "Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics", J. Appl. Phys., 92, 2424- 2436. https://doi.org/10.1063/1.1497462
  9. Ivanovskaya, M., Kotsikau, D., Faglia, G. and Nelli, P. (2003), "Influence of chemical composition and structural factors of $Fe_2O_3$/$In_2O_3$ sensors on their selectivity and sensitivity to ethanol", Sens. Actuat. B, 96, 498-503. https://doi.org/10.1016/S0925-4005(03)00624-5
  10. Jellison, Jr. G.E. and Modine, F.A. (1996), "Parameteterization of the optical functions of amorphous materials in the interband region", Appl. Phys. Lett., 69, 371-373. https://doi.org/10.1063/1.118064
  11. Ling, T.R. and Tsai, C.M. (2006), "Influence of nano-scale dopants of Pt, CaO and $SiO_2$, on the alcohol sensing of $SnO_2$ thin films", Sens. Actuat. B, 119, 497-503. https://doi.org/10.1016/j.snb.2006.01.017
  12. Neri, G., Bonavita, A., Rizzo, G., Galvagno, S., Capone, S. and Siciliano, P. (2005), "A study of the catalytic activity and sensitivity to different alcohols of $CeO_2$-$Fe_2O_3$ thin films", Sens. Actuat. B, 111-112, 78-83. https://doi.org/10.1016/j.snb.2005.06.045
  13. Nguyen, L.Q., Phan, P.Q., Duong, H.N., Nguyen, Ch.D. and Nguyen, L.H. (2013), "Enhancement of $NH_3$ gas sensitivity at room temperature by carbon nanotube-based sensor coated with Co nanoparticles", Sensors, 13, 1754-1762. https://doi.org/10.3390/s130201754
  14. Pawar, N.K., Kajale, D.D., Patil, G.E., Wagh, V.G., Gaikwad, V.B., Deore, M.K. and Jain, G.H. (2012) "Nanostructured $Fe_2O_3$ thick film as an ethanol sensor", Int. J. Smart Sens. Intel. Syst., 5, 441-457.
  15. Prajapati, C.S. and Sahay, P.P. (2011), "Alcohol-sensing characteristics of spray deposited ZnO nano-particle thin films", Sens. Actuat. B, 160, 1043-1049. https://doi.org/10.1016/j.snb.2011.09.023
  16. Tan, O.K., Cao, W. and Zhu, W. (2000), "Alcohol sensor based on a non-equilibrium nanostructured $xZrO_2$-$(1-x)\alpha$-$Fe_2O_3$ solid solution system", Sens. Actuat. B, 63, 129-134. https://doi.org/10.1016/S0925-4005(00)00340-3
  17. Trocino, S., Donato, A., Latino, M., Donato, N., Leonardi, S.G. and Neri, G. (2012), "Pt-$TiO_2$/ MWCNTs hybrid composites for monitoring low hydrogen concentrations in air", Sensors, 12, 12361-12373. https://doi.org/10.3390/s120912361
  18. Vrnata, M., Myslik, V., Vyslouzil, F., Jelinek, M., Lancok, J. and Zemek, J. (2000), "The response of tin acetylacetonate and tin dioxide-based gas sensors to hydrogen and alcohol vapours", Sens. Actuat. B, 71, 24-30. https://doi.org/10.1016/S0925-4005(00)00589-X
  19. Xu, J., Han, J., Zhang, Y., Sun, Y. and Xie, B. (2008), "Studies on alcohol sensing mechanism of ZnO based gas sensors", Sens. Actuat. B, 132, 334-339. https://doi.org/10.1016/j.snb.2008.01.062
  20. Zhang, Y., He, X., J., Li, Miao, Z. and Huang, F. (2008), "Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun $SnO_2$ nanofibers", Sens. Actuat. B, 132, 67-73. https://doi.org/10.1016/j.snb.2008.01.006

Cited by

  1. Polyhedral α-Fe 2 O 3 crystals@RGO nanocomposites: Synthesis, characterization, and application in gas sensing vol.732, 2018, https://doi.org/10.1016/j.jallcom.2017.10.205
  2. Metal oxide gas sensors decorated with carbon nanotubes vol.55, pp.4, 2015, https://doi.org/10.3952/physics.v55i4.3230
  3. Gas sensors based on functionalized carbon nanotubes vol.50, pp.4, 2015, https://doi.org/10.3103/S1068337215040064
  4. Enhanced virus filtration in hybrid membranes with MWCNT nanocomposite vol.6, pp.1, 2019, https://doi.org/10.1098/rsos.181294
  5. Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites vol.5, pp.3, 2017, https://doi.org/10.12989/anr.2017.5.3.215
  6. Solid State Electronic Sensors for Detection of Carbon Dioxide vol.19, pp.18, 2019, https://doi.org/10.3390/s19183848