• 제목/요약/키워드: nano-powders

검색결과 604건 처리시간 0.032초

Characteristics of $ZnGa_2O_4$ phosphor prepared by Precipitation method and Solid-state reaction method (침전법과 고상반응법으로 제조한 $ZnGa_2O_4$ 형광체의 특성)

  • Cha, Jae-Hyeok;Kim, Se-Jun;Kwak, Hyun-Ho;Choi, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.383-384
    • /
    • 2007
  • The nano and micro-sized $ZnGa_2O_4$ phosphor were prepared by precipitation method and solid-state method. The luminescence, formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The result of XRD analysis showed that $ZnGa_2O_4$ spinel structure was formed at as-prepared in the case of precipitation method. However, micro-sized phosphor was required high heating treatment to have a satisfactory spinel structure. The CL intensity of nano-sized phosphor was about 4-fold higher than that of micro-sized phosphor. The emission spectra of all $ZnGa_2O_4$ phosphor show a self activated blue emission band at around 420 nm in the wide range of 300~600 nm.

  • PDF

Corrosion Behavior and Microstructural Evolution of Magnesium Powder with Milling Time Prepared by Mechanical Milling (기계적 밀링법으로 제조된 마그네슘 분말의 밀링시간에 따른 미세구조 변화와 부식거동)

  • Ahn, Jin Woo;Hwang, Dae Youn;Kim, Gyeung-ho;Kim, Hye-Sung
    • Korean Journal of Metals and Materials
    • /
    • 제49권6호
    • /
    • pp.454-461
    • /
    • 2011
  • In this study, the relationship between corrosion resistance and microstructural characteristics such as grain size reduction, preferred orientation, and homogenous distribution of elements and impurity by mechanical milling of magnesium powder was investigated. Mechanical milling of pure magnesium powder exhibited a complex path to grain refinement and growth together with preferred orientation reversal with milling time. It was also found that anisotropic formation of dislocation on the basal plane of magnesium was initially the dominant mechanism for grain size reduction. After 60 hrs of milling, grain coarsening was observed and interpreted as a result of the strain relaxation process through recrystallization. In spite of the finer grain size and strong (002) texture developed in the sample prepared by spark plasma sintering at $500^{\circ}C$ for 5 min after mechanical milling for 2hrs, the sample showed a higher corrosion rate. The results from this study will be helpful for better understanding of the controlling factor for corrosion resistance and behaviors of mechanical milled magnesium powders.

Characteristics of BaMgAl10O17:Eu Phosphor Powders Prepared from Spray Solution with Organic Additives and NH4Cl Flux (유기 첨가제 및 NH4Cl 융제를 함유하는 분무용액으로부터 합성된 BaMgAl10O17:Eu 형광체의 특성)

  • Lee, Sang Ho;Koo, Hye Young;Ko, Da Rae;Lee, Su Min;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • 제48권1호
    • /
    • pp.75-79
    • /
    • 2010
  • The precursor powders with thin wall structure were prepared by spray pyrolysis from the spray solution with ethylenediaminetetraacetic acid, citric acid and $NH_4Cl$ flux. The $BaMgAl_{10}O_{17}:Eu$ phosphor powders formed from the spray solution without organic additives and flux material had sizes of $1{\sim}5{\mu}m$ and hollow structure with high thickness at post-treatment temperature of $1,200^{\circ}C$. However, $BaMgAl_{10}O_{17}:Eu$ phosphor powders formed from the spray solution with ethylenediaminetetraacetic acid, citric acid and $NH_4Cl$ flux had fine size and plate-like shape. The mean crystallite sizes of the phosphor powders with fine sizes were 23, 35, and 33 nm when the content of $NH_4Cl$ flux were 0, 6, 35 wt% of phosphor. The photoluminescence intensity of the phosphor powders formed from the spray solution with the optimum amount of $NH_4Cl$ flux as 35 wt% was 215% of that of the phosphor powders formed from the spray solution without flux material.

Magnetic Properties of Co-substituted Ba-ferrite Powder by Sol-gel Method (졸-겔법에 의한 Cobalt 치환된 Ba-ferrite 분말의 자기적 특성)

  • Choi, Hyun-Seung;Park, Hyo-Yul;Yoon, Seog-Young;Shin, Hak-Gi;Kim, Tae-Ok
    • Journal of the Korean Ceramic Society
    • /
    • 제39권8호
    • /
    • pp.789-794
    • /
    • 2002
  • In this study, nano-sized Si-C-N precursor powders were synthesized by Chemical Vapor Condensation Method(CVC) using TMS(Tetramethylsilane: $Si(CH_3)_4$), $NH_3$ and $H_2$ gases under the various reaction conditions of the reaction temperature, TMS/$NH_3$ ratio and TMS/$H_2$ ratio. XRD and FESEM were used to analysis the crystalline phase and the average particle size of the synthesized powders. It was found that the obtained powders under the considering conditions were all spherical amorphous powder with the particle size of 87∼130 nm. The particle size was decreased as the reaction temperature increased and TMS/$NH_3$ and TMS/$H_2$ ratio decreased. As the results of EA analysis, it was found that the synthesized powders had been formed the powders composed of Si, N, C and H. Through FT-IR results, it was found that the synthesized powders were Si-C-N precursor powders with Si-C, Si-N and C-N bonds.

Synthesis and Characterization of Si-C-N Precursor by Using Chemical Vapor Condensation Method (화학기상응축법을 이용한 Si-C-N Precursor 분말의 합성 및 특성평가)

  • Kim, Hyoung-In;Kim, Dae-Jung;Hong, Jin-Seok;So, Myoung-Gi
    • Journal of the Korean Ceramic Society
    • /
    • 제39권8호
    • /
    • pp.783-788
    • /
    • 2002
  • In this study, nano-sized Si-C-N precursor powders were synthesized by Chemical Vapor Condensation Method(CVC) using TMS(Tetramethylsilane: Si($CH_3)_4$), $NH_3$ and $H_2$ gases under the various reaction conditions of the reaction temperature, TMS/$NH_3$ ratio and TMS/$H_2$ ratio. XRD and FESEM were used to analysis the crystalline phase and the average particle size of the synthesized powders. It was found that the obtained powders under the considering conditions were all spherical amorphous powder with the particle size of 87∼130 nm. The particle size was decreased as the reaction temperature increased and TMS/$NH_3$ and TMS/$H_2$ ratio decreased. As the results of EA analysis, it was found that the synthesized powders had been formed the powders composed of Si, N, C and H. Through FT-IR results, it was found that the synthesized powders were Si-C-N precursor powders with Si-C, Si-N and C-N bonds.

Synthesis of Pt@TiO2 Nano-composite via Photochemical Reduction Method (광화학 환원방법을 이용한 Pt@TiO2 나노 복합체 합성)

  • Kim, Ji Young;Byun, Jong Min;Kim, Jin Woo;Kim, Young Do
    • Journal of Powder Materials
    • /
    • 제21권2호
    • /
    • pp.119-123
    • /
    • 2014
  • Pt has been widely used as catalyst for fuel cell and exhausted gas clean systems due to its high catalytic activity. Recently, there have been researches on fabricating composite materials of Pt as a method of reducing the amount of Pt due to its high price. One of the approaches for saving Pt used as catalyst is a core shell structure consisting of Pt layer on the core of the non-noble metal. In this study, the synthesis of Pt shell was conducted on the surface of $TiO_2$ particle, a non-noble material, by applying ultraviolet (UV) irradiation. Anatase $TiO_2$ particles with the average size of 20~30 nm were immersed in the ethanol dissolved with Pt precursor of $H_2PtCl_6{\cdot}6H_2O$ and exposed to UV irradiation with the wavelength of 365 nm. It was confirmed that Pt nano-particles were formed on the surface of $TiO_2$ particles by photochemical reduction of Pt ion from the solution. The morphology of the synthesized Pt@$TiO_2$ nano-composite was examined by TEM (Transmission Electron Microscopy).

Effects of Nano-Sized Inorganic Fillers on Polymerization and Thermal Degradation of Polyurethane Composites (나노사이즈 무기분말이 폴리우레탄복합체의 중합 및 열분해반응에 미치는 영향)

  • Lee, Joon-Man;Ahn, Won-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제11권3호
    • /
    • pp.1027-1034
    • /
    • 2010
  • Effects of inorganic nano-powders on the polymerization and thermal degradation kinetics as well as the mechanical properties of polyurethane nano-composites were studied by both the measurement of polymerization temperature as a function of time and non-isothermal thermogravimetric analysis (TGA) as well as the Instron test. As the results from polymerization studies, the reaction rates of MMT-filled PU composites were faster than those of Ce500-filled ones, and moreover, the activation energies using Kissinger method for the thermal degradation of composites were calculated as 139.34 kJ/mol for the Ce500-filled PU composites and 91.12 kJ/mol for MMT-filled one, respectivel, exhibiting that MMT nano-powder seemed to be acting as the catalyst for both polymerization and degradation of PU composites. UTM result, however, showed that tensile strength at break of MMT-filled composites was much higher than that of Ce500-filled ones above the concentrations range of 5 phr in the composites.

Enhancement of FeCrAl-ODS steels through optimised SPS parameters and addition of novel nano-oxide formers

  • A. Meza;E. Macia;M. Serrano;C. Merten;U. Gaitzsch;T. Weissgarber;M. Campos
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2584-2594
    • /
    • 2024
  • A novel approach to incorporating oxide formers into ferritic ODS production has been developed using the co-precipitation technique. This method enables the tailored design of complex nano-oxides, integrated during Mechanical Alloying (MA) and precipitated during Spark Plasma Sintering (SPS) consolidation. Findings illustrate that co-precipitation effectively produces nano-powders with customised compositions, enriching Y, Ti, and Zr in the ferritic grade to condition subsequent oxide precipitation. While the addition of Y-Ti-Zr-O nano-oxides did not prevent the formation of Y-Al-O and Al-containing nano-oxides, these were refined thanks to the presence of well-dispersed Zr. Additionally, the Spark Plasma Sintering (SPS) parameters were optimised to tailor the bimodal grain size distribution of the ODS steels, aiming for favourable strength-to-ductility ratios. Comprehensive microstructural analyses were performed using SEM, EDS, EBSD, and TEM techniques, alongside mechanical assessments involving microtensile tests conducted at room temperature and small punch tests carried out at room temperature, 300 ℃, and 500 ℃. The outcomes yielded promising findings, showcasing similar or better performance with conventionally manufactured ODS steels. This reinforces the effectiveness and success of this innovative approach.

Magnetic Properties of Fe4N Nanoparticles and Magnetic Fe17Sm2Nx Powders (Fe4N 나노분말과 Fe17Sm2Nx 자성분말의 자기적 특성)

  • Oh, Young-Woo;Lee, Jung-Goo;Park, Sang-Jun
    • Journal of the Korean Magnetics Society
    • /
    • 제22권3호
    • /
    • pp.79-84
    • /
    • 2012
  • Nano-magnetic materials such as iron-nitrides have been actively studied as an alternative to the application of high density, high performance needs for next generation information storage and also alternative to the rare earth and neodymium magnet. $Fe_4N$ is the basic materials for magnetic storage media and is one of the important magnetic materials in focus because of its higher magnetic recording density and chemical stability. Single phase ${\gamma}^{\prime}-Fe_4N$ nanoparticles have been prepared by a PAD (Plasma Arc Discharge) method and nitriding in a $NH_3-H_2$ mixed gases at temperature, $400^{\circ}C$ for 4 hrs. Also $Fe_{17}Sm_2N_x$ powders were synthesized by nitriding after reduction/diffusion of $Fe_{17}Sm_2$ to compare the magnetic properties with nano-sized $Fe_4N$ particles. The saturation magnetization of $Fe_4N$ and $Fe_{17}Sm_2N_x$ were 149 and 117 emu/g, respectively, but the coercive force was considerably smaller than that of bulk or acicular $Fe_4N$.

Synthesis and Characterization of Sm2O3 Doped CeO2 Nanopowder by Reverse Micelle Processing (역마이셀을 이용한 Sm2O3 도핑 CeO2 나노분말의 합성 및 특성)

  • Kim, Jun-Seop;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • 제22권4호
    • /
    • pp.207-210
    • /
    • 2012
  • The preparation of $Sm_2O_3$ doped $CeO_2$ in Igepal CO-520/cyclohexane reverse micelle solutions has been studied. In the present work, we synthesized nanosized $Sm_2O_3$ doped $CeO_2$ powders by reverse micelle process using aqueous ammonia as the precipitant; hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase, and poly (xoyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by Thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), and Transmission electron microscopy (TEM). The crystallite size was found to increase with increase in water to surfactant (R) molar ratio. Average particle size and distribution of the synthesized $Sm_2O_3$ doped $CeO_2$ were below 10 nm and narrow, respectively. TG-DTA analysis shows that phase of $Sm_2O_3$ doped $CeO_2$ nanoparticles changed from monoclinic to tetragonal at approximately $560^{\circ}C$. The phase of the synthesized $Sm_2O_3$ doped $CeO_2$ with heating to $600^{\circ}C$ for 30 min was tetragonal $CeO_2$. This study revealed that the particle formation process in reverse micelles is based on a two step model. The rapid first step is the complete reduction of the metal to the zero valence state. The second step is growth, via reagent exchanges between micelles through the inter-micellar exchange.