Browse > Article
http://dx.doi.org/10.4283/JKMS.2012.22.3.079

Magnetic Properties of Fe4N Nanoparticles and Magnetic Fe17Sm2Nx Powders  

Oh, Young-Woo (Dept. of Nano Science and Engineering, Kyungnam University)
Lee, Jung-Goo (Korea Institute of Materials Science)
Park, Sang-Jun (Dept. of Nano Science and Engineering, Kyungnam University)
Abstract
Nano-magnetic materials such as iron-nitrides have been actively studied as an alternative to the application of high density, high performance needs for next generation information storage and also alternative to the rare earth and neodymium magnet. $Fe_4N$ is the basic materials for magnetic storage media and is one of the important magnetic materials in focus because of its higher magnetic recording density and chemical stability. Single phase ${\gamma}^{\prime}-Fe_4N$ nanoparticles have been prepared by a PAD (Plasma Arc Discharge) method and nitriding in a $NH_3-H_2$ mixed gases at temperature, $400^{\circ}C$ for 4 hrs. Also $Fe_{17}Sm_2N_x$ powders were synthesized by nitriding after reduction/diffusion of $Fe_{17}Sm_2$ to compare the magnetic properties with nano-sized $Fe_4N$ particles. The saturation magnetization of $Fe_4N$ and $Fe_{17}Sm_2N_x$ were 149 and 117 emu/g, respectively, but the coercive force was considerably smaller than that of bulk or acicular $Fe_4N$.
Keywords
$Fe_4N$; $Fe_{17}Sm_2N_x$; nitriding; PAD; reduction/diffusion method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Jiles, Introduction to Magnetism and Magnetic Materials, Chapman and Hall, New York (1989) p. 324.
2 G. W. Wiener and J. A. Berger, Trans. AIME, J. Metals 360 (1955).
3 T. B. Byeon and J. H. Oh, J. Kor. Ceram. Soc. 28, 93 (1991).
4 Y. W. Oh and M. S. Kim, J. Kor. Mag. Soc. 2, 244 (1992).
5 X. L. Wu, W. Zhong, H. Y. Jiang, N. J. Tang, W. Q. Zou, and Y. W. Du, J. Magn. Magn. Mater. 281, 77 (2004).   DOI   ScienceOn
6 J. M. D. Coey and H. Sun, J. Magn. Magn. Mater. 87, L251 (1990).   DOI   ScienceOn
7 K. M. ZuZek, P. J. Guiness, and G. Drazic, J. Alloy. Compd. 345, 214 (2002).   DOI   ScienceOn
8 T. Hirosawa, Jpn. Soc. Appl. Electromagnetics and Mechanics 10, 287 (2002).
9 J. G. Lee, S. W. Kang, S. J. Park, Y. W. Oh, and C. J. Choi, Kor. J. Met. Mater. 48, 842 (2010).
10 W. Y. Park, C. S. Youn, J. H. Yu, Y. W. Oh, and C. J. Choi, Kor. J. Mater. Res. 14, 511 (2004).   DOI   ScienceOn
11 K. Tagawa, E. Kita, and A. Tasaki, Jpn. J. Appl. Phys. 21, 1596 (1982).   DOI
12 T. K. Kim and M. Takahashi, Appl. Phys. Lett. 20, 492 (1972).   DOI
13 S. Atiq, H, S. Ko, S. A. Siddiqi, and S. C. Shin, J. Alloy. Compd. 479, 755 (2009).   DOI   ScienceOn