DOI QR코드

DOI QR Code

Enhancement of FeCrAl-ODS steels through optimised SPS parameters and addition of novel nano-oxide formers

  • A. Meza (Dpt. Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid (UC3M)) ;
  • E. Macia (Dpt. Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid (UC3M)) ;
  • M. Serrano (Structural Materials Division, Technology Department, CIEMAT) ;
  • C. Merten (Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM) ;
  • U. Gaitzsch (Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM) ;
  • T. Weissgarber (Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM) ;
  • M. Campos (Dpt. Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid (UC3M))
  • Received : 2023.09.18
  • Accepted : 2024.02.07
  • Published : 2024.07.25

Abstract

A novel approach to incorporating oxide formers into ferritic ODS production has been developed using the co-precipitation technique. This method enables the tailored design of complex nano-oxides, integrated during Mechanical Alloying (MA) and precipitated during Spark Plasma Sintering (SPS) consolidation. Findings illustrate that co-precipitation effectively produces nano-powders with customised compositions, enriching Y, Ti, and Zr in the ferritic grade to condition subsequent oxide precipitation. While the addition of Y-Ti-Zr-O nano-oxides did not prevent the formation of Y-Al-O and Al-containing nano-oxides, these were refined thanks to the presence of well-dispersed Zr. Additionally, the Spark Plasma Sintering (SPS) parameters were optimised to tailor the bimodal grain size distribution of the ODS steels, aiming for favourable strength-to-ductility ratios. Comprehensive microstructural analyses were performed using SEM, EDS, EBSD, and TEM techniques, alongside mechanical assessments involving microtensile tests conducted at room temperature and small punch tests carried out at room temperature, 300 ℃, and 500 ℃. The outcomes yielded promising findings, showcasing similar or better performance with conventionally manufactured ODS steels. This reinforces the effectiveness and success of this innovative approach.

Keywords

Acknowledgement

The research leading to these results has received funding from Spanish Ministry of Science, Innovation and Universities under project MAT2013-47460-C5-5-P and MAT2016-80875-C3-3-R. Daniel Plaza Lopez is sincerely thanked for his help with the Small Punch tests.

References

  1. S.J. Zinkle, J.L. Boutard, D.T. Hoelzer, A. Kimura, R. Lindau, G.R. Odette, M. Rieth, L. Tan, H. Tanigawa, Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications, Nucl. Fusion 57 (2017) 17, https://doi.org/10.1088/1741-4326/57/9/092005. 
  2. N. Cunningham, Y. Wu, D. Klingensmith, G.R. Odette, On the remarkable thermal stability of nanostructured ferritic alloys, Mater. Sci. Eng. A. 613 (2014) 296-305, https://doi.org/10.1016/j.msea.2014.06.097. 
  3. M.K. Miller, D.T. Hoelzer, E.a. Kenik, K.F. Russell, Stability of ferritic MA/ODS alloys at high temperatures, Intermetallics 13 (2005) 387-392, https://doi.org/10.1016/j.intermet.2004.07.036. 
  4. S. Ukai, M. Fujiwara, Perspective of ODS alloys application in nuclear environments, J. Nucl. Mater. 307-311 (2002) 749-757, https://doi.org/10.1016/S0022-3115(02)01043-7. 
  5. S. Takaya, T. Furukawa, G. Muller, A. Heinzel, A. Jianu, A. Weisenburger, K. Aoto, M. Inoue, T. Okuda, F. Abe, S. Ohnuki, T. Fujisawa, A. Kimura, Al-containing ODS steels with improved corrosion resistance to liquid lead-bismuth, J. Nucl. Mater. 428 (2012) 125-130, https://doi.org/10.1016/j.jnucmat.2011.06.046. 
  6. T. Liu, C. Wang, H. Shen, W. Chou, N.Y. Iwata, A. Kimura, The effects of Cr and Al concentrations on the oxidation behavior of oxide dispersion strengthened ferritic alloys, Corrosion Sci. 76 (2013) 310-316, https://doi.org/10.1016/j.corsci.2013.07.004. 
  7. S. Ohtsuka, T. Kaito, M. Inoue, T. Asayama, S.W. Kim, S. Ukai, T. Narita, H. Sakasegawa, Effects of aluminum on high-temperature strength of 9Cr-ODS steel, J. Nucl. Mater. (2009) 386-388, https://doi.org/10.1016/j.jnucmat.2008.12.147, 479-482. 
  8. C.H. Zhang, A. Kimura, R. Kasada, J. Jang, H. Kishimoto, Y.T. Yang, Characterization of the oxide particles in Al-added high-Cr ODS ferritic steels, J. Nucl. Mater. 417 (2011) 221-224, https://doi.org/10.1016/j.jnucmat.2010.12.063. 
  9. R. Kamikawa, S. Ukai, S. Kasai, N. Oono, S. Zhang, Y. Sugino, H. Masuda, E. Sato, Cooperative grain boundary sliding in creep deformation of FeCrAl-ODS steels at high temperature and low strain rate, J. Nucl. Mater. 511 (2018) 591-597, https://doi.org/10.1016/j.jnucmat.2018.04.050. 
  10. M.K. Miller, C.M. Parish, Role of alloying elements in nanostructured ferritic steels, Mater. Sci. Technol. 27 (2011) 729-734, https://doi.org/10.1179/1743284710Y.0000000039. 
  11. P. Dou, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, Effects of extrusion temperature on the nano-mesoscopic structure and mechanical properties of an Al-alloyed high-Cr ODS ferritic steel, J. Nucl. Mater. 417 (2011) 166-170, https://doi.org/10.1016/j.jnucmat.2011.01.061. 
  12. A. Kimura, R. Kasada, N. Iwata, H. Kishimoto, C.H. Zhang, J. Isselin, P. Dou, J. H. Lee, N. Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, T. F. Abe, Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems, J. Nucl. Mater. 417 (2011) 176-179, https://doi.org/10.1016/J.JNUCMAT.2010.12.300. 
  13. H.S. Cho, A. Kimura, S. Ukai, M. Fujiwara, Corrosion properties of oxide dispersion strengthened steels in super-critical water environment, J. Nucl. Mater. 329-333 (2004) 387-391, https://doi.org/10.1016/j.jnucmat.2004.04.040. 
  14. K. Dawson, S.J. Haigh, G.J. Tatlock, A.R. Jones, Nano-particle precipitation in mechanically alloyed and annealed precursor powders of legacy PM2000 ODS alloy, J. Nucl. Mater. 464 (2015) 200-209, https://doi.org/10.1016/j.jnucmat.2015.04.039. 
  15. A. Wasilkowska, M. Bartsch, U. Messerschmidt, R. Herzog, A. Czyrska-Filemonowicz, Creep mechanisms of ferritic oxide dispersion strengthened alloys, J. Mater. Process. Technol. 133 (2003) 218-224, https://doi.org/10.1016/S0924-0136(02)00237-6. 
  16. J.H. Schneibel, M. Heilmaier, W. Blum, G. Hasemann, T. Shanmugasundaram, Temperature dependence of the strength of fine- and ultrafine-grained materials, Acta Mater. 59 (2011) 1300-1308, https://doi.org/10.1016/j.actamat.2010.10.062. 
  17. P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition, J. Nucl. Mater. 444 (2014) 441-453, https://doi.org/10.1016/j.jnucmat.2013.10.028. 
  18. R. Gao, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum, J. Nucl. Mater. 444 (2014) 462-468, https://doi.org/10.1016/j.jnucmat.2013.10.038. 
  19. J. Isselin, R. Kasada, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, Effects of Zr addition on the microstructure of 14%Cr4%Al ODS ferritic steels, Mater. Trans. 51 (2010) 1011-1015, https://doi.org/10.2320/matertrans.MBW200923. 
  20. A. Garcia-Junceda, N. Garcia-Rodriguez, M. Campos, M. Carton-Cordero, J. M. Torralba, Effect of zirconium on the microstructure and mechanical properties of an Al-alloyed ODS steel consolidated by FAHP, J. Am. Ceram. Soc. 98 (2015) 3582-3587, https://doi.org/10.1111/jace.13691. 
  21. K.A. Unocic, B.A. Pint, D.T. Hoelzer, Advanced TEM characterization of oxide nanoparticles in ODS Fe-12Cr-5Al alloys, J. Mater. Sci. 51 (2016) 9190-9206, https://doi.org/10.1007/s10853-016-0111-5. 
  22. E. Macia, A. Garcia-Junceda, M. Serrano, M. Hernandez-Mayoral, L.A. Diaz, M. Campos, Effect of the heating rate on the microstructure of a ferritic ODS steel with four oxide formers (Y-Ti-Al-Zr) consolidated by spark plasma sintering (SPS), J. Nucl. Mater. 518 (2019) 190-201, https://doi.org/10.1016/j.jnucmat.2019.02.043. 
  23. A. Garcia-Junceda, E. Macia, D. Garbiec, M. Serrano, J.M. Torralba, M. Campos, Effect of small variations in Zr content on the microstructure and properties of ferritic ODS steels consolidated by SPS, Metals 10 (2020) 348, https://doi.org/10.3390/met10030348. 
  24. H. Xu, Z. Lu, D. Wanga, C. Liu, Effect of zirconium addition on the microstructure and mechanical properties of 15Cr-ODS ferritic Steels consolidated by hot isostatic pressing, Fusion Eng. Des. 114 (2017) 33-39, https://doi.org/10.1016/J.FUSENGDES.2016.11.011. 
  25. H. Dong, L. Yu, Y. Liu, C. Liu, H. Li, J. Wu, Enhancement of tensile properties due to microstructure optimization in ODS steels by zirconium addition, Fusion Eng. Des. 125 (2017) 402-406, https://doi.org/10.1016/J.FUSENGDES.2017.03.170. 
  26. W. Li, T. Hao, R. Gao, X. Wang, T. Zhang, Q. Fang, C. Liu, The effect of Zr, Ti addition on the particle size and microstructure evolution of yttria nanoparticle in ODS steel, Powder Technol. 319 (2017) 172-182, https://doi.org/10.1016/J.POWTEC.2017.06.041. 
  27. L. Zhang, L. Yu, Y. Liu, C. Liu, H. Li, J. Wu, Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels, Mater. Sci. Eng. A. 695 (2017) 66-73, https://doi.org/10.1016/J.MSEA.2017.04.020. 
  28. T. Liu, L. Wang, C. Wang, H. Shen, H. Zhang, Feasibility of using Y2Ti2O7 nanoparticles to fabricate high strength oxide dispersion strengthened Fe-Cr-Al steels, Mater. Des. 88 (2015) 862-870, https://doi.org/10.1016/j.matdes.2015.08.118. 
  29. L. Wang, Z. Bai, H. Shen, C. Wang, T. Liu, Creation of Y2Ti2O7 nanoprecipitates to strengthen the Fe-14Cr-3Al-2W steels by adding Ti hydride and Y2O3 nanoparticles, J. Nucl. Mater. 488 (2017) 319-327, https://doi.org/10.1016/j.jnucmat.2017.03.015. 
  30. T.A. Schaedler, W. Francillon, A.S. Gandhi, C.P. Grey, S. Sampath, C.G. Levi, Phase evolution in the YO1.5-TiO2-ZrO2 system around the pyrochlore region, Acta Mater. 53 (2005) 2957-2968, https://doi.org/10.1016/j.actamat.2005.03.010. 
  31. A. Meza, E. Macia, A. Garcia-Junceda, L.A. Diaz, P. Chekhonin, E. Altstadt, M. Serrano, M.E. Rabanal, M. Campos, Development of new 14 Cr ODS steels by using new oxides formers and B as an inhibitor of the grain growth, Metals 10 (2020) 1-16, https://doi.org/10.3390/met10101344. 
  32. N. Garcia-Rodriguez, M. Campos, J.M. Torralba, M.H. Berger, Y. Bienvenu, Capability of mechanical alloying and SPS technique to develop nanostructured high Cr, Al alloyed ODS steels, Mater. Sci. Technol. 30 (2014) 1676-1684, https://doi.org/10.1179/1743284714Y.0000000595. 
  33. M. Serrano, M. Hernandez-Mayoral, A. Garcia-Junceda, Microstructural anisotropy effect on the mechanical properties of a 14Cr ODS steel, J. Nucl. Mater. 428 (2012) 103-109, https://doi.org/10.1016/J.JNUCMAT.2011.08.016. 
  34. M. Serrano, A. Garcia-Junceda, R. Hernandez, M.H. Mayoral, On anisotropy of ferritic ODS alloys, Mater. Sci. Technol. 30 (2014) 1664-1668, https://doi.org/10.1179/1743284714Y.0000000552. 
  35. J.R. Fermin, D.Y. Salcedo, C.D. Rinc, Analisis de tension/tamano en compuestos ternarios AgIn5VI8 (VI = S, Se, Te) mediante difraccion de Rayos-x, Rev. Mexic. Fisica 63 (2017) 345-350. 
  36. Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T. G. Langdon, E.J. Lavernia, Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves, Mater. Sci. Eng. A. 525 (2009) 68-77, https://doi.org/10.1016/j.msea.2009.06.031. 
  37. R.E. Stoller, S.J. Zinkle, On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials, J. Nucl. Mater. 283-287 (2000) 349-352, https://doi.org/10.1016/S0022-3115(00)00378-0. 
  38. M. Praud, F. Mompiou, J. Malaplate, D. Caillard, J. Garnier, A. Steckmeyer, B. Fournier, Study of the deformation mechanisms in a Fe-14% Cr ODS alloy, J. Nucl. Mater. 428 (2012) 90-97, https://doi.org/10.1016/J.JNUCMAT.2011.10.046. 
  39. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, T. Narita, Improvement of 9Cr-ODS martensitic steel properties by controlling excess oxygen and titanium contents, J. Nucl. Mater. (2004) 329-333, https://doi.org/10.1016/J.JNUCMAT.2004.04.043, 372-376.
  40. S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, T. Narita, Nano-structure control in ODS martensitic steels by means of selecting titanium and oxygen contents, in: J. Phys. Chem. Solids, Pergamon, 2005, pp. 571-575, https://doi.org/10.1016/j.jpcs.2004.06.033. 
  41. X. Boulnat, D. Fabregue, M. Perez, S. Urvoy, D. Hamon, Y. de Carlan, Assessment of consolidation of oxide dispersion strengthened ferritic steels by spark plasma sintering: from laboratory scale to industrial products, Powder Metall. 57 (2014) 204-211, https://doi.org/10.1179/1743290114Y.0000000091. 
  42. I. Hilger, X. Boulnat, J. Hoffmann, C. Testani, F. Bergner, Y. De Carlan, F. Ferraro, A. Ulbricht, Fabrication and characterization of oxide dispersion strengthened (ODS) 14Cr steels consolidated by means of hot isostatic pressing, hot extrusion and spark plasma sintering, J. Nucl. Mater. 472 (2016) 206-214, https://doi.org/10.1016/j.jnucmat.2015.09.036. 
  43. X. Boulnat, M. Perez, D. Fabregue, T. Douillard, M.H. Mathon, Y. De Carlan, Microstructure evolution in nano-reinforced ferritic steel processed by mechanical alloying and spark plasma sintering, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45 (2014) 1485-1497, https://doi.org/10.1007/s11661-013-2107-y. 
  44. C. Heintze, M. Hernandez-Mayoral, A. Ulbricht, F. Bergner, A. Shariq, T. Weissgarber, H. Frielinghaus, Nanoscale characterization of ODS Fe-9%Cr model alloys compacted by spark plasma sintering, J. Nucl. Mater. 428 (2012) 139-146, https://doi.org/10.1016/j.jnucmat.2011.08.053. 
  45. Z. Oksiuta, N. Baluc, Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel, J. Nucl. Mater. (2009) 386-388, https://doi.org/10.1016/j.jnucmat.2008.12.148,426-429. 
  46. M.J. Alinger, G.R. Odette, D.T. Hoelzer, On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys, Acta Mater. 57 (2009) 392-406, https://doi.org/10.1016/j.actamat.2008.09.025. 
  47. R. Rahmanifard, H. Farhangi, A.J. Novinrooz, Effect of zirconium and tantalum on the microstructural characteristics of 12YWT ODS steel nanocomposite, J. Alloys Compd. 622 (2015) 948-952, https://doi.org/10.1016/j.jallcom.2014.11.018. 
  48. H. Xu, Z. Lu, S. Ukai, N. Oono, C. Liu, Effects of annealing temperature on nanoscale particles in oxide dispersion strengthened Fe-15Cr alloy powders with Ti and Zr additions, J. Alloys Compd. 693 (2017) 177-187, https://doi.org/10.1016/j.jallcom.2016.09.133. 
  49. S. Mohan, G. Kaur, B.K. Panigrahi, C. David, G. Amarendra, Effect of Zr and Al addition on nanocluster formation in oxide dispersion strengthened steel - an ab initio study, J. Alloys Compd. 767 (2018) 122-130, https://doi.org/10.1016/j.jallcom.2018.07.047. 
  50. C.L. Fu, M. Krcmar, G.S. Painter, X.Q. Chen, Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe, Phys. Rev. Lett. 99 (2007) 1-4, https://doi.org/10.1103/PhysRevLett.99.225502. 
  51. A. Claisse, P. Olsson, First-principles calculations of (Y, Ti, O) cluster formation in body centred cubic iron-chromium, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 303 (2013) 18-22, https://doi.org/10.1016/j.nimb.2013.01.016. 
  52. D. Murali, B.K. Panigrahi, M.C. Valsakumar, C.S. Sundar, Diffusion of y and Ti/Zr in bcc iron: a first principles study, J. Nucl. Mater. 419 (2011) 208-212, https://doi.org/10.1016/j.jnucmat.2011.05.018. 
  53. D. Murali, B.K. Panigrahi, M.C. Valsakumar, S. Chandra, C.S. Sundar, B. Raj, The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nanostructured ferritic alloys: an ab initio study, J. Nucl. Mater. 403 (2010) 113-116, https://doi.org/10.1016/j.jnucmat.2010.06.008. 
  54. Y. Jiang, J.R. Smith, G.R. Odette, Formation of Y-Ti-O nanoclusters in nanostructured ferritic alloys: a first-principles study, Phys. Rev. B - Condens. Matter Mater. Phys. 79 (2009) 1-7, https://doi.org/10.1103/PhysRevB.79.064103. 
  55. I. Bogachev, E. Grigoryev, O.L. Khasanov, E. Olevsky, Fabrication of 13Cr-2Mo ferritic/martensitic oxide-dispersion-strengthened steel components by mechanical alloying and spark-plasma sintering, Jom 66 (2014) 1020-1026, https://doi.org/10.1007/s11837-014-0972-5. 
  56. J. Trapp, B. Kieback, Temperature distribution in metallic powder particles during initial stage of field-activated sintering, J. Am. Ceram. Soc. 98 (2015) 3547-3552, https://doi.org/10.1111/jace.13757. 
  57. X. Song, X. Liu, J. Zhang, Neck Formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering, J. Am. Ceram. Soc. 89 (2006) 494-500, https://doi.org/10.1111/j.1551-2916.2005.00777.x. 
  58. S. Diouf, A. Molinari, Densification mechanisms in spark plasma sintering: effect of particle size and pressure, Powder Technol. 221 (2012) 220-227, https://doi.org/10.1016/j.powtec.2012.01.005. 
  59. P. Franke, C. Heintze, F. Bergner, T. Weissgarber, Mechanical properties of spark plasma sintered Fe-Cr compacts strengthened by nanodispersed yttria particles, Mater. Test. 52 (2010) 133-138, https://doi.org/10.3139/120.110115. 
  60. A.S. Semenov, J. Trapp, M. Nothe, O. Eberhardt, T. Wallmersperger, B. Kieback, Experimental and numerical analysis of the initial stage of field-assisted sintering of metals, J. Mater. Sci. 52 (2017) 1486-1500, https://doi.org/10.1007/s10853-016-0444-0. 
  61. X. Zhou, Y. Liu, L. Yu, Z. Ma, Q. Guo, Y. Huang, H. Li, Microstructure characteristic and mechanical property of transformable 9Cr-ODS steel fabricated by spark plasma sintering, Mater. Des. 132 (2017) 158-169, https://doi.org/10.1016/J.MATDES.2017.06.063. 
  62. N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, T. Furuhara, Stress-strain behavior of ferrite and bainite with nano-precipitation in low carbon steels, Acta Mater. 83 (2015) 383-396, https://doi.org/10.1016/J.ACTAMAT.2014.10.010. 
  63. J. Shen, Y. Li, F. Li, H. Yang, Z. Zhao, S. Kano, Y. Matsukawa, Y. Satoh, H. Abe, Microstructural characterization and strengthening mechanisms of a 12Cr-ODS steel, Mater. Sci. Eng. A. 673 (2016) 624-632, https://doi.org/10.1016/j.msea.2016.07.030. 
  64. M. Dade, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, A. Deschamps, Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels, Acta Mater. 127 (2017) 165-177, https://doi.org/10.1016/j.actamat.2017.01.026. 
  65. X. Zhou, Y. Liu, L. Yu, Z. Ma, Q. Guo, Y. Huang, H. Li, Microstructure characteristic and mechanical property of transformable 9Cr-ODS steel fabricated by spark plasma sintering, Mater. Des. 132 (2017) 158-169, https://doi.org/10.1016/j.matdes.2017.06.063.