Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.6.454

Corrosion Behavior and Microstructural Evolution of Magnesium Powder with Milling Time Prepared by Mechanical Milling  

Ahn, Jin Woo (Dept. of Nano Fusion Technology, College of Nanoscience & Nanotechnology, Pusan National University)
Hwang, Dae Youn (Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University)
Kim, Gyeung-ho (Nano-Analysis Center, Korea Institute of Science and Technology)
Kim, Hye-Sung (Dept. of Nano Fusion Technology, College of Nanoscience & Nanotechnology, Pusan National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.6, 2011 , pp. 454-461 More about this Journal
Abstract
In this study, the relationship between corrosion resistance and microstructural characteristics such as grain size reduction, preferred orientation, and homogenous distribution of elements and impurity by mechanical milling of magnesium powder was investigated. Mechanical milling of pure magnesium powder exhibited a complex path to grain refinement and growth together with preferred orientation reversal with milling time. It was also found that anisotropic formation of dislocation on the basal plane of magnesium was initially the dominant mechanism for grain size reduction. After 60 hrs of milling, grain coarsening was observed and interpreted as a result of the strain relaxation process through recrystallization. In spite of the finer grain size and strong (002) texture developed in the sample prepared by spark plasma sintering at $500^{\circ}C$ for 5 min after mechanical milling for 2hrs, the sample showed a higher corrosion rate. The results from this study will be helpful for better understanding of the controlling factor for corrosion resistance and behaviors of mechanical milled magnesium powders.
Keywords
metals; mechanical alloying/milling; corrosion; transmission electron microscopy (TEM);
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 H.J. Fecht, E. Hellstern, Z. Fu, and W.L. Johnson, Metall. Trans. 21A, 2333 (1990)
2 J. Eckert, J.C. Holzer, C.E. Krill, and W.L. Johnson, J. Mater. Res. 7, 1751 (1992).   DOI
3 C.J. Youngdahl, P.G. Sanders, J.A. Eastman, and J.R. Weertman, Scripta Materialia 37, 809 (1997).   DOI   ScienceOn
4 G.W. Nieman, J.R. Weertman, and R.W. Siegel, J. Mater. Res. 6, 1012 (1991).   DOI   ScienceOn
5 M. Jain and T. Christman, Acta Metallurgica et Materialia 42, 1901 (1994).   DOI   ScienceOn
6 J. Eckert, N. Schlorke, C.A.R.T. Miranda, L. Chultz, in: C.M.Ward-Close et al. (Ed.), Synthesis/Processing of Lightweight Metallic Materials II, TMS Annual Meeting, Minerals, Metals and Materials Soc. (TMS), Warrendale, PA, USA, p. 383 (1997).
7 A. Calka and A.P. Radlinski, Mater. Sci. Eng. A118, 131 (1989).
8 S. Hwang, C. Nishimura, and P.G. McCormick, Mater. Sci. Eng. A 318, 22 (2001).
9 M. Grosjean, M. Zidoune, L. Roue, J. Huot, and R. Schulz, Electrochim. Acta 49, 2461 (2004).   DOI   ScienceOn
10 M. Zidoune, M.H. Grosjean, L. Roue, J. Huot, and R. Schulz, Corr. Sci. 46, 3041 (2004).   DOI   ScienceOn
11 D. Song, A. Ma, J. Jiang, P. Lin, D. Yang, and J. Fan, Corr. Sci. 52, 481 (2010).   DOI   ScienceOn
12 M. Hoseini, A. Shahryari, S. Omanovic, and JA. Szpunar, Corr. Sci. 51, 3064 (2009).   DOI   ScienceOn
13 H.J. Choi, Y. Kim, J.H. Shin, and D.H. Bae, Mater. Sci. Eng. A 527, 1565 (2010).
14 J. Eckert, Nanostructrured Mater. 6, 413 (1995).   DOI   ScienceOn
15 H.S. Kim, D.S. Suhr, G.H. Kim, and D.W. Kum, Met. Mater. 2, 15 (1996).   DOI   ScienceOn
16 G. B. Hamu, D. Elierzer, and L. Wagner, J. Alloys. Com. 468, 222 (2009).   DOI   ScienceOn
17 H. Gabacz, M. Pisarek, and K.M. Kurzydlowski, Biomol. Eng. 24, 559 (2007).   DOI   ScienceOn
18 R. Mishra and R. Balasubramaniam, Corr. Sci. 46, 3019 (2004).   DOI   ScienceOn
19 S.J. Thorpe, B. Ramaswami, and K.T. Aust. J. Electrochem. Soc. 135, 2162 (1988).   DOI   ScienceOn