• 제목/요약/키워드: nano-emulsion

검색결과 106건 처리시간 0.026초

Preparation and Release Behavior of Atorvastatin Calcuim - Encapsulated Polyoxalate Microspheres (아토르바스타틴 칼슘을 함유한 폴리옥살레이트 미립구의 제조 및 방출거동)

  • Lee, Cheon Jung;Kim, Su Young;Lee, Hyun Gu;Yang, Jaewon;Park, Jin Young;Cha, Se Rom;Lim, Dong-Kwon;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • 제38권5호
    • /
    • pp.656-663
    • /
    • 2014
  • Atorvastatin calcium-loaded polyoxalate (POX) microspheres were prepared by an emulsion solvent-evaporation/ extraction method of oil-in-oil-in-water ($O_1/O_2/W$) for sustained release. We investigated the release behavior according to initial drug ratio, molecular weight ($M_w$) and concentration of POX and concentration of emulsifier. The microsphere was characterized on the surface, the cross-section morphology and the behavior of atorvastatin calcium release for 10 days by scanning electron microscopy (SEM) and high performance liquid chromatography (HPLC). The analysis of crystallization was analyzed to use X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared (FTIR). These results showed that the release behaviors can be controlled by preparation conditions.

Radiolytic Synthesis of Ag-Loaded Polystyrene(Ag-PS) Nanoparticles and Their Antimicrobial Efficiency Against Staphylococcus aureus and Klebsiella pneumoniase

  • Oh, Seong-Dae;Byun, Bok-Soo;Lee, Seung-Ho;Choi, Seong-Ho;Kim, Moon-Il;Park, Hyun-Gyu
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.285-290
    • /
    • 2007
  • Ag nanoparticles were distributed onto polystyrene nanoparticle (PS-Ag) beads using two synthetic methodologies. In the first methodology, polystyrene (PS) beads were prepared via emulsion polymerization, with Ag nanoparticles subsequently loaded onto the surface of the PS beads. The polymerization of styrene was radiolytically induced in an ethanol (EtOH)/water medium, generating PS beads. Subsequently, Ag nanoparticles were loaded onto the PS beads via the reduction of Ag ions. The results from the morphological studies, using field emission transmission electron microscopy (FE-TEM), reveal the PS particles were spherical and nanosized, and the average size of the PS spherical particles decreased with increasing volume % of water in the polymerization medium. The size of the PS spherical particles increases with increasing radiation dose for the polymerization. Also, the amount of Ag nanoparticle loading could be increased by increasing the irradiation dose for the reduction of the Ag ions. In the second methodology, the polymerization of styrene and reduction of Ag ions were simultaneously performed by irradiating a solution containing styrene and Ag ions in an EtOH/water medium. Interestingly, the Ag nanoparticles were preferentially homogeneously distributed within the PS particles (not on the surface of the PS particles). Thus, Ag nanoparticles were distributed onto the surface of the PS particles using the first approach, but into the PS clusters of the particles via the second. The antimicrobial efficiency of a cloth coated with the Ag-PS composite nanoparticles was tested against bacteria, such as Staphylococcus aureus and Klebsiella pneumoniase, for 100 water washing cycles.

Surface Chemistry in Biocompatible Nanocolloidal Particles (생체 적합한 나노입자와 계면화학)

  • Kim Jong-Duk;Jung Jae Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제30권3호
    • /
    • pp.295-305
    • /
    • 2004
  • Colloid and surface chemistry have been focused on surface area and surface energy. Local surface properties such as surface density, interaction, molecular orientation and reactivity have been one of interesting subjects. Systems of such surface energy being important would be listed as association colloid, emulsion, particle dispersion, foam, and 2-D surface and film. Such nanoparticle systems would be applied to drug delivery systems and functional cosmetics with biocompatible and degradable materials, while nanoparticles having its size of several nm to micron, and wide surface area, have been accepted as a possible drug carrier because their preparation, characteristics and drug loading have been inves-tigated. The biocompatible carriers were also used for the solubilization of insoluble drugs, the enhancement of skin absorption, the block out of UV radiation, the chemical stabilization and controlled release. Nano/micro emulstion system is classified into nano/microsphere, nano/microcapsule, nano/microemulsion, polymeric micelle, liposome according to its prep-aration method and size. Specially, the preparation method and industrial applications have been introduced for polymeric micelles self-assembled in aqueous solution, nano/microapsules controlling the concentration and activity of high concen-tration and activity materials, and monolayer or multilayer liposomes carrying bioactive ingredients.

Asymmetric Bioconversion of Acetophenone in Nano-Sized Emulsion Using Rhizopus oryzae

  • Li, Qingzhi;Shi, Yang;He, Le;Zhao, Hui
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.72-79
    • /
    • 2016
  • The fungal morphologies and pellet sizes were controlled in acetophenone reduction by Rhizopus oryzae. The acetophenone conversion and (S)-phenylethanol enantiomeric excesses (e.e.) reached the peak after 72 h of incubation when using pellets with 0.54 mm diameter, which showed an excellent performance compared with suspended mycelia, clumps, and pellets with 0.65 or 0.75 mm diameter. Furthermore, nano-sized acetophenone was used as a substrate to improve the performances of biotransformation work. The results showed that the conversion of nanometric acetophenone and (S)-phenylethanol e.e. reached the maximum (both >99%) after 32 h of incubation when using 0.54 mm diameter pellets, at least 24 h in advance of the control group. On the other hand, Tween 80 and 1, 2-propylene glycol showed low or no toxicity to cells. In conclusion, pellets and acetophenone nanoemulsions synergistically result in superior performances of acetophenone reduction.

Current Research Trends in Wood Preservative for Enhanced Durability : A Literature Review on Copper Based Preservatives (옥외 내구성 향상을 위한 목재보존제의 최근 연구 동향 - 구리 기반 약제를 중심으로 -)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권3호
    • /
    • pp.212-227
    • /
    • 2012
  • Current research trends in wood preservatives for enhancing durability was reviewed. Due to leaching of recent Copper-Based Preservatives commonly used as chemicals for pressure treatment; they have been a growing concern, especially in improving the fixation of the copper as alkyl ammonium quat. and azol in wood and preventing the leaching of active ingredients. With the appearance of emulsion type chemicals using micronized and nano-sized wood preservatives, researchs on characteristics of Copper-Based Preservatives regarding penetration and fixation in wood are debatable. Moreover, unlike the case of CCA, the recent alkyl ammonium quat. and azol bear a serious threat in the decrease of antimicrobial effectiveness against wood destroying fungi with copper tolerance. Therefore, development and research of co-biocide is needed.

Nano Capsulization of Ceramide and the Efficacy of Atopy Skin (나노세라마이드의 캡슐화와 아토피 피부의 치료)

  • Zhoh Choon-Koo;Kim In-Young;Lee Hee-Seob
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제30권3호
    • /
    • pp.419-426
    • /
    • 2004
  • The nano-ceramide capsulation is a technique that capsulates ceramide III and tocopheryl linoleate at the mono-vesicle to act on the horny layer in skin. In this technique, $0.5{\~}5.0\;wt\%$ of hydrogenated lecithin and $0.01{\~}2.00\;wt\%$ of lysolecithin are used as the membrane-strengthen agents of the mono-vesicle and $5.0{\~}10.0\;wt\%$ of propylene glycol and $5.0{\~}10.0\;wt\%$ of ethyl alcohol are used as solvents. Active ingredients such ceramide III and tocopheryl linoleate are utilized to enhance the moisturizing efficacy and treat atopy skin. These materials do not contain synthetic emulsifiers. The optimal conditions or nano-ceramide capsulation are such that particles pass Microfludizdizer 3 times at 1,000 bar and $60{\~}70^{\circ}C$ and pH of nano capsules is $5.8{\pm}0.5.$ The average size of particles is $63.1{\pm}7.34\;nm$ showing lucid state like water by the laser light scattering. A zeta potential value is $-55.1\pm0.84\;mV.$ Through clinical tests, the moisturizing effect (in-vivo, n=8, p-value<0.05) showed $21.15\%$ of improvement comparison to comparison-samples and $36.31\%$ of improvement compared to the state before treatment. Moreover, the effectiveness of atopy skin showed positive reaction from 10 volunteers.

Preparation and Characterization of Zaltoprofen-Loaded Polyoxalate Microspheres for Control Release (방출제어를 위한 잘토프로펜이 함유된 폴리옥살레이트 미립구의 제조와 특성)

  • Kim, Kyoung Hee;Lee, Cheon Jung;Jo, Sun A;Lee, Jung Hwan;Jang, Ji Eun;Lee, Dongwon;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • 제37권6호
    • /
    • pp.702-710
    • /
    • 2013
  • Zaltoprofen loaded polyoxalate (POX) microspheres were prepared by an emulsion solvent-evaporation/extraction method like oil-in-water (O/W) for sustained release of zaltoprofen. The influence of several preparation parameters such as fabrication temperature, stirring speed, intensity of the sonication, initial drug ratio, molecular weight ($M_w$) of POX, concentration of POX and concentration of emulsifier has been investigated on the zaltoprofen release profiles. Physicochemical properties and morphology of zaltoprofen loaded POX microspheres were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared (FTIR). Through the analyzed results, it was demonstrated that the characteristics of the microspheres greatly affected by the prepared condition. The releases behavior of zaltoprofen was investigated for 10 days in vitro. It was confirmed that the release behavior of zaltoprofen can be controlled by the manufacturing factor of solvent-evaporation/extraction method.

Synthesis and Characterization of High Molecular Weight Biodegradable Polyoxalate (고분자량 생분해성 폴리옥살레이트의 합성과 특성분석)

  • Kim, Se-Ho;Yoo, Han-Na;Khang, Gil-Son;Lee, Dong-Won
    • Polymer(Korea)
    • /
    • 제34권6호
    • /
    • pp.547-552
    • /
    • 2010
  • Biodegradable polymers have gained enormous attentions in the pharmaceutical and biomedical applications, especially in drug delivery. In this work, we report the synthesis and characteristics of high molecular weight polyoxalate with ~75000 Da. Hydrolytic degradation kinetics and degradation products were characterized by nuclear magnetic resonance and gel permeation chromatography. Polyoxalate is a semicrystalline and thermally stable polymer with a glass transition temperature of ${\sim}35^{\circ}C$, which is suitable for drug delivery applications. The hydrophobic nature of polyoxalate allows it to be formulated into nanoparticles and encapsulate drugs using a conventional oil-in-water emulsion/solvent displacement method. Polyoxalate nanoparticles also exhibited excellent cytotoxicity profiles. It can be suggested that polyoxalate has great potential for numerous biomedical and pharmaceutical applications.

Cosmetic Application of Bis-ethylhexyloxyphenolmethoxyphenyltriazine (BEMT) Loaded Solid Lipid Nano-particle (SLN) (비스에칠헥실옥시페놀메톡시페닐트리아진(BEMT)을 봉입한 고형지질나노입자(Solid Lipid Nano-particle)의 화장품 응용)

  • Lee, Geun-Soo;Lee, Dong-Whan;Pyo, Hyeung-Bae;Choi, Tae-Boo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제33권4호
    • /
    • pp.219-225
    • /
    • 2007
  • Bis-ethylhexyloxyphenolmethoxyphenyltrizine (BEMT) is one of the most widely used chemical UVA+UVB double absorbers in sunscreen products. But topical application of BEMT is restricted due to its defects in product. The purpose of this study is to adopt the sunscreen product of solid lipid nano-particles containing BEMT (BEMT-SLN). The particle diameters, the encapsulation efficiencies and the crystallization index (C.I.) are about 330nm, 93.3 % and the 4.3 %. As a result, in vitro penetration and release of BEMT were generally higher in O/W emulsion than the SLN formulation. However in vivo study, it was shown that the rate of release could be decreased by 80 % in the SLN formulation. The sun protection factor (SPF) of the SLN formulation increased by 100 % in the in vitro UV protection test. Therefore, SLN formulation potentiated the UV-blocking power of BEMT. This study suggest that SLN can be used for the encapsulation of BEMT.

Preparation of Core/Shell Nanoparticles Using Poly(3,4-ethylenedioxythiophene) and Multi-Walled Carbon Nanotube Nanocomposites via an Atom Transfer Radical Polymerization (Poly(3,4-ethylenedioxythiophene)을 이용한 Core/shell 나노입자와 원자이동 라디칼중합 공정에 의한 다중벽 탄소나노튜브 나노복합체 제조)

  • Joo, Young-Tae;Jin, Seon-Mi;Kim, Yang-Soo
    • Polymer(Korea)
    • /
    • 제33권5호
    • /
    • pp.452-457
    • /
    • 2009
  • Hybrid nanomaterials consisting of multi-walled carbon nanotube(MWNT) and/or PEDOT of conductive polymer were prepared in this study. In the presence of catalyst and ligand, the MWNT-Br compound prepared by the successive surface treatment reaction was mixed with MMA to initiate the atom transfer radical polymerization process. PMMA was covalently linked to the surface of MWNT for the formation of MWNT/PMMA nanocomposites. The EDOT and oxidant were added in the aqueous emulsion of PS produced via a miniemulsion polymerization process and then it proceeded to carry out the oxidative chemical polymerization of EDOT for the preparation of PEDOT/PS nanoparticles with the core-shell structure. The aqueous dispersion of PEDOT:poly(styrene sulfonate) (PSS) was mixed with the silica particles treated with a silane compound and thus PEDOT:PSS-clad silica nanoparticles were prepared by the surface chemistry reaction. The hybrid nanomaterials were analyzed by using TEM, FE-SEM, TGA, EDX, UV, and FT-IR.