Browse > Article

Synthesis and Characterization of High Molecular Weight Biodegradable Polyoxalate  

Kim, Se-Ho (Polymer Fusion Research Center, Department of Polymer.Nano Science and Technology, Chonbuk National University)
Yoo, Han-Na (Department of BIN Fusion Technology, Chonbuk National University)
Khang, Gil-Son (Polymer Fusion Research Center, Department of Polymer.Nano Science and Technology, Chonbuk National University)
Lee, Dong-Won (Polymer Fusion Research Center, Department of Polymer.Nano Science and Technology, Chonbuk National University)
Publication Information
Polymer(Korea) / v.34, no.6, 2010 , pp. 547-552 More about this Journal
Abstract
Biodegradable polymers have gained enormous attentions in the pharmaceutical and biomedical applications, especially in drug delivery. In this work, we report the synthesis and characteristics of high molecular weight polyoxalate with ~75000 Da. Hydrolytic degradation kinetics and degradation products were characterized by nuclear magnetic resonance and gel permeation chromatography. Polyoxalate is a semicrystalline and thermally stable polymer with a glass transition temperature of ${\sim}35^{\circ}C$, which is suitable for drug delivery applications. The hydrophobic nature of polyoxalate allows it to be formulated into nanoparticles and encapsulate drugs using a conventional oil-in-water emulsion/solvent displacement method. Polyoxalate nanoparticles also exhibited excellent cytotoxicity profiles. It can be suggested that polyoxalate has great potential for numerous biomedical and pharmaceutical applications.
Keywords
polyoxalate; biocompatibility; biodegradation; nanoparticles;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 O. S. Kluin, H. C. van der Mei, H. J. Busscher, and D. Neut, Biomaterials, 30, 4738 (2009).   DOI   ScienceOn
2 M. M. Rauhut, Acc. Chem. Res., 2, 80 (1969).   DOI
3 A. G. Hadd, D. W. Lehmpuhl, L. R. Kuck, and J. W. Birks, Journal of Chemical Education, 76, 1237 (1999).   DOI
4 S. W. Shalaby and D. D. Jamiolkowski, U.S. Patent 4,130,639 (1978).
5 A. C. R. Grayson, G. Voskerician, A. Lynn, J. M. Anderson, M. J. Cima, and R. Langer, J. Biomater. Sci.-Polym. Ed., 15, 1281 (2004).   DOI   ScienceOn
6 J. Y. Yoo, J. M. Kim, K. S. Seo, Y. K. Jeong, H. B. Lee, and G. Khang, Bio-Med. Mater. Eng., 15, 279 (2005).
7 M. S. Kim, K. S. Seo, G. Khang, S. H. Cho, and H. B. Lee, J. Biomed. Mater. Res. Part A, 70A, 154 (2004).   DOI
8 F. L. Mi, S. S. Shyu, Y. M. Lin, Y. B. Wu, C. K. Peng, and Y. H. Tsai, Biomaterials, 24, 5023 (2003).   DOI   ScienceOn
9 F. L. Mi, Y. M. Lin, Y. B. Wu, S. S. Shyu, and Y. H. Tsai, Biomaterials, 23, 3257 (2002).   DOI   ScienceOn
10 B. S. Kim, J. M. Oh, K. S. Kim, K. S. Seo, J. S. Cho, G. Khang, H. B. Lee, K. Park, and M. S. Kim, Biomaterials, 30, 902 (2009).   DOI   ScienceOn
11 S. C. Yang, M. Bhide, I. N. Crispe, R. H. Pierce, and N. Murthy, Bioconjug. Chem., 19, 1164 (2008).   DOI   ScienceOn
12 S. Kim, K. Seong, O. Kim, H. Seo, M. Lee, G. Khang, and D. Lee, Biomacromolecules, 11, 555 (2010).   DOI   ScienceOn
13 S. J. Holland, B. J. Tighe, and P. L. Gould, J. Control. Release, 4, 155 (1986).   DOI   ScienceOn
14 M. J. Heffernan and N. Murthy, Bioconjug. Chem., 16, 1340 (2005).   DOI   ScienceOn
15 S. Lee, S. C. Yang, M. J. Heffernan, W. R. Taylor, and N. Murthy, Bioconjug. Chem., 18, 4 (2007).   DOI   ScienceOn
16 J. M. Criscione, B. L. Le, E. Stern, M. Brennan, C. Rahner, X. Papademetris, and T. M. Fahmy, Biomaterials, 30, 3946 (2009).   DOI   ScienceOn
17 L. Brannonpeppas, Int. J. Pharm., 116, 1 (1995).   DOI   ScienceOn