• Title/Summary/Keyword: nano porous

Search Result 431, Processing Time 0.033 seconds

Manganese Doped LiFePO4 as a Cathode for High Energy Density Lithium Batteries (고에너지밀도 리튬전지를 위한 망간이 첨가된 LiFePO4 양극재료)

  • Kim, Dul-Sun;Kim, Jae-Kwang;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.157-161
    • /
    • 2013
  • Porous $LiMn_{0.6}Fe_{0.4}PO_4$ (LMFP) was synthesized by a sol-gel process. Uniform dispersion of the conductive carbon source throughout LMFP with uniform carbon coating was achieved by heating a stoichiometric mixture of raw materials at $600^{\circ}C$ for 10 h. The crystal structure of LMFP was investigated by Rietveld refinement. The surface structure and pore properties were investigated by SEM, TEM and BET. The LMFP so obtained has a high specific surface area with a uniform, porous, and web-like nano-sized carbon layer at the surface. The initial discharge capacity and energy density were 152 mAh/g and 570 Wh/kg, respectively, at 0.1 C current density, and showed stable cycle performance. The combined effect of high porosity and uniform carbon coating leads to fast lithium ion diffusion and enhanced electrochemical performance.

Effect of Ag Nanolayer in Low Temperature Cu/Ag-Ag/Cu Bonding (저온 Cu/Ag-Ag/Cu 본딩에서의 Ag 나노막 효과)

  • Kim, Yoonho;Park, Seungmin;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.59-64
    • /
    • 2021
  • System-in-package (SIP) technology using heterogeneous integration is becoming the key of next-generation semiconductor packaging technology, and the development of low temperature Cu bonding is very important for high-performance and fine-pitch SIP interconnects. In this study the low temperature Cu bonding and the anti-oxidation effect of copper using porous Ag nanolayer were investigated. It has been found that Cu diffuses into Ag faster than Ag diffuses into Cu at the temperatures from 100℃ to 200℃, indicating that solid state diffusion bonding of copper is possible at low temperatures. Cu bonding using Ag nanolayer was carried out at 200℃, and the shear strength after bonding was measured to be 23.27 MPa.

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery

  • Zheng, Guoxu;Yin, Jinghua;Guo, Ziqiang;Tian, Shiyi;Yang, Xu
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.458-464
    • /
    • 2021
  • Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.

Magnetic Nanochain-Based Smart Drug Delivery System with Remote Tunable Drug Release by a Magnetic Field

  • Byunghoon Kang;Moo-Kwang Shin;Seungmin Han;Ilyoung Oh;Eunjung Kim;Joseph Park;Hye Young Son;Taejoon Kang;Juyeon Jung;Yong-Min Huh;Seungjoo Haam;Eun-Kyung Lim
    • BioChip Journal
    • /
    • v.16
    • /
    • pp.280-290
    • /
    • 2020
  • Considerable attention is given to drug delivery technology that efficiently delivers appropriate levels of drug molecules to diseased sites with significant therapeutic efficacy. Nanotechnology has been used to develop various strategies for targeted drug delivery, while controlling the release of drugs because of its many benefits. Here, a delivery system was designed to control drug release by external magnetic fields using porous silica and magnetic nanoparticles. Magnetic nanochains (MNs) of various lengths (MN-1: 1.4 ± 0.8 ㎛, MN-2: 2.2 ± 1.1 ㎛, and MN-3: 5.3 ± 2.0 ㎛) were synthesized by controlling the exposure time of the external magnetic force in magnetic nanoaggregates (MNCs). Mesoporous silica-coated magnetic nanochains (MSMNs) (MSMN-1, MSMN-2, and MSMN-3) were prepared by forming a porous silica layer through sol-gel polymerization. These MSMNs could load the drug doxorubicin (DOX) into the silica layer (DOX-MSMNs) and control the release behavior of the DOX through an external rotating magnetic field. Simulations and experiments were used to verify the motion and drug release behavior of the MSMNs. Furthermore, a bio-receptor (aptamer, Ap) was introduced onto the surface of the DOX-MSMNs (Ap-DOX-MSMNs) that could recognize specific cancer cells. The Ap-DOX-MSMNs demonstrated a strong therapeutic effect on cancer cells that was superior to that of the free DOX. The potent ability of these MSMNs as an external stimulus-responsive drug delivery system was proven.

Fabrication of Tailor-Made 3D PCL Scaffold Using a Bio-Plotting Process (바이오-플로팅시스템을 통한 Tailor-Made 3D PCL Scaffold 제작)

  • Son, Joon-Gon;Kim, Geun-Hyung;Park, Su-A;Kim, Wan-Doo
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Biomedical scaffold for tissue regeneration was fabricated by one of rapid prototyping processes, bioplotting system, with a biodegradable and biocompatible poly($\varepsilon$-carprolactone)(PCL). Through dynamic mechanical test, it was observed that the PCL scaffold manufactured by the bioplotting process has the superior mechanical properties compared to the conventional scaffold fabricated by a salt-leaching process, and the plotted scaffold could be employed as a potential scaffold to regenerating hard and soft tissue. The plotted scaffold was consisted of porous structures. which were interconnected with each pore to help cells be easily adhered and proliferated in the wall of pore tunnels, and metabolic nutrients can be transported within the matrix. By using the plotting system, we could adjust the pore size, porosity, strand pitch, and, strand diameter of PCL scaffolds, which were important parameters to control mechanical properties of the scaffolds, and consequently we could determine that the mechanically controlled scaffolds could be used as a matching scaffold for any required mechanical properties of the target organ. The fabricated 3D PCL scaffold showed enough possibility as a 3D biomedical scaffold, which was cell-cultured with chondrocytes.

Studies on the Preparation of Nanofiltration Membrane for Ultra-low Pressure Application through Hydrophilization of Porous PVDF Membrane Using Inorganic Salts (무기염을 이용한 다공성 PVDF 고분자막의 친수화를 통한 초저압용 나노여과막 제조 연구)

  • Park, Chan Jong;Cho, Eun Hye;Rhim, Ji Won;Cheong, Seong Ihl
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • To prepare the hollow fiber nanofiltration composite membranes, the poly(vinylidene fluoride) (PVDF) membrane was hydrophilized with $K_2Cr_2OH$ and $KMnO_4$ aqueous solutions. And then the composite membrane was synthesized on that membrane surfaces using interfacial polymerization with piperazine (PIP) and trimesoyl chloride (TMC). The resulting membranes were characterized in terms of the rejection and flux for NaCl, $CaSO_4$, $MgCl_2$ 100 ppm solution and 300 ppm of NaCl and $CaSO_4$ mixed solution by varying the coating time, drying time, and the concentration of the coating materials. As a result, the higher rejections were shown for $K_2Cr_2OH$ solutionas a hydrophilization material, and the flux was enhanced while the rejection reduced as the hydrophilization time is longer. Also, the rejection increased and the flux reduced as the concentrations of triethyl amine (TEA) and sodium lauryl sulfate (SLS) were higher. Typically, the rejection 50% and flux 40 LMH for NaCl 100 ppm solution, and the rejection 55% and flux 48 LMH for $CaSO_4$ 100 ppm solution were obtained for the PVDF hollow fiber composite membrane prepared with the conditions of PIP 2 wt% (Triethyl amine (TEA) 7 wt%, SLS 20 wt% mixed solution against PIP concentration) and TMC 0.1 wt%.

Application of ZVI/TiO2 towards Clean-up of the Contaminated Soil with Polychlorinated Biphenyls (ZVI/TIO2를 이용한 폴리염화비페닐로 오염된 토양 정화)

  • Jae Wook Park;Yun Jin Jo;Dong-Keun Lee
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.118-125
    • /
    • 2023
  • Once a site is contaminated with polychlorinated biphenyls (PCBs), serious environmental and human health risks are inevitable. Therefore, innovative but economical in situ remediation technologies must be immediately applied to the contaminated site. Recently, nanoscale zero-valent iron (nano-ZVI) particles have successfully been applied for the dechlorination of various chlorinated organic compounds like TCE, PCE and DDT, and they are considered to be environmentally safe due to the high abundance of iron in the earth's crust. Nano-ZVIs are much more reactive than granular ones, but tend to agglomerate due to their high surface energy and magnetic properties. In order to prevent them from being agglomerated toward larger particles, TiO2 was used as a support to immobilize the nano-ZVI particles as much as possible. 10wt% ZVI/TiO2 was prepared by adding NaBH4 slowly into an FeSO4/TiO2 aqueous slurry. In spite of their non-uniformity in size, the nano-ZVI particles were quite successfully dispersed onto the exterior surface of a non-porous TiO2 powder. The ZVI/TiO2 was then employed to degrade Aroclor 1242, a kind of PCBs standard, in spiked soil, and its reactivity towards the degradation of Aroclor 1242 was investigated. The fabricated ZVI/TiO2 degraded Aroclor 1242 in soil quite effectively, but the creation of remaining dechlorinated compounds, possibly high molecular weight hydrocarbons, in the soil was unavoidable.

A Review of Anodic TiO2 Nanostructure Formation in High-temperature Phosphate-based Organic Electrolytes: Properties and Applications (고온 인산염 유기 전해질에서의 TiO2 나노구조 형성 원리와 응용)

  • Oh, Hyunchul;Lee, Young Sei;Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.375-382
    • /
    • 2017
  • In the present review, we provide an overview of the research trend of anodic $TiO_2$ nanostructures. To date, most anodic $TiO_2$ nanostructure formation has focused on the fluoride ion electrolyte system to form nanotube layers. Recently, a novel approach that describes the formation of thick, self-organized $TiO_2$ nanostructures was reported. These layers can be prepared on Ti metal by anodization in a hot organic/$K_2HPO_4$ electrolyte. This nanostructure consists of a strongly interlinked network of nanosized $TiO_2$, and thus provides a considerably higher specific surface area than that of using anodic $TiO_2$ nanotubes. This review describes the formation mechanism and novel properties of the new nanostructures, and introduces potential applications.

Properties of Dye Sensitized Solar Cells with Porous TiO2 Layers Using Polymethyl-Methacrylate Nano Beads

  • Choi, Minkyoung;Noh, Yunyoung;Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.194-199
    • /
    • 2016
  • We prepared polymethyl methacrylate (PMMA) beads with a particle size of 80 nm to improve the energy conversion efficiency (ECE) by increasing the effective surface area and the dye absorption ability of the working electrodes (WEs) in a dye sensitized solar cell (DSSC). We prepared the $TiO_2$ layer with PMMA beads of 0.0~1.0 wt%; then, finally, a DSSC with $0.45cm^2$ active area was obtained. Optical microscopy, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to characterize the microstructure of the $TiO_2$ layer with PMMA. UV-VIS-NIR was used to determine the optical absorbance of the WEs with PMMA. A solar simulator and a potentiostat were used to determine the photovoltaic properties of the PMMA-added DSSC. Analysis of the microstructure showed that pores of 200 nm were formed by the decomposition of PMMA. Also, root mean square values linearly increased as more PMMA was added. The absorbance in the visible light regime was found to increase as the degree of PMMA dispersion increased. The ECE increased from 4.91% to 5.35% when the amount of PMMA beads added was increased from 0.0 to 0.4 wt%. However, the ECE decreased when more than 0.6 wt% of PMMA was added. Thus, adding a proper amount of PMMA to the $TiO_2$ layer was determined to be an effective method for improving the ECE of a DSSC.

The dependence of porosity and crystallity on photoluminescence properties of Er doped $Al_2O_3/SiO_2$ films prepared by sol-gel method (졸-겔 방법으로 제조된 Er doped $Al_2O_3/SiO_2$ 필름의 다공성과 결정성에 대한 광 발광 특성)

  • 권정오;김재홍;석상일;정동운
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.137-137
    • /
    • 2003
  • Optical amplificator have been used to compensate the losses in the optical signal transmission and processing. Today, there has been increasing demand for the very low cost optical amplifier. Sol-gel offers considerable potential both low cost manufacture, and for great flexibility in materials composition and structure. In addition, the sol-gel process is a very attractive method for producing porous materials with controlled structure. In this work, we present the potoluminescence properties of Er doped A1$_2$O$_3$/SiO$_2$ films. Erbium doped alumina nano sol was prepared by Al(NO$_3$)$_3$.9$H_2O$ and Er(NO$_3$)$_3$.5$H_2O$ through hydrolysis and peptization, and then GPS (3-Glycidoxypropyltrimethoxysilane) was added into Er doped alumina nano sol for organic- inorganic hybridization. Er doped A1$_2$O$_3$/SiO$_2$ film was obtained by spin coating, dip coating and thermal treatment from 30$0^{\circ}C$~120$0^{\circ}C$, and there were crack-free after thermal treatment. The thickness of film was measured SEM, and the porosity of film was characterized by BET and TGA. The crystal phase of Er doped A1$_2$O$_3$/SiO$_2$ were determined by XRD. Finally, the photoluminescence properties of Er doped A1$_2$O$_3$/SiO$_2$ films will be discuss with the consideration of porosity and crystallity.

  • PDF