DOI QR코드

DOI QR Code

Application of ZVI/TiO2 towards Clean-up of the Contaminated Soil with Polychlorinated Biphenyls

ZVI/TIO2를 이용한 폴리염화비페닐로 오염된 토양 정화

  • Jae Wook Park (Department of Environmental Protection/Graduate School, Gyeongsang National University) ;
  • Yun Jin Jo (Department of Environmental Protection/Graduate School, Gyeongsang National University) ;
  • Dong-Keun Lee (Department of Environmental Protection/Graduate School, Gyeongsang National University)
  • 박재욱 (경상국립대학교 대학원 환경보전학과) ;
  • 조윤진 (경상국립대학교 대학원 환경보전학과) ;
  • 이동근 (경상국립대학교 대학원 환경보전학과)
  • Received : 2023.03.24
  • Accepted : 2023.05.08
  • Published : 2023.06.30

Abstract

Once a site is contaminated with polychlorinated biphenyls (PCBs), serious environmental and human health risks are inevitable. Therefore, innovative but economical in situ remediation technologies must be immediately applied to the contaminated site. Recently, nanoscale zero-valent iron (nano-ZVI) particles have successfully been applied for the dechlorination of various chlorinated organic compounds like TCE, PCE and DDT, and they are considered to be environmentally safe due to the high abundance of iron in the earth's crust. Nano-ZVIs are much more reactive than granular ones, but tend to agglomerate due to their high surface energy and magnetic properties. In order to prevent them from being agglomerated toward larger particles, TiO2 was used as a support to immobilize the nano-ZVI particles as much as possible. 10wt% ZVI/TiO2 was prepared by adding NaBH4 slowly into an FeSO4/TiO2 aqueous slurry. In spite of their non-uniformity in size, the nano-ZVI particles were quite successfully dispersed onto the exterior surface of a non-porous TiO2 powder. The ZVI/TiO2 was then employed to degrade Aroclor 1242, a kind of PCBs standard, in spiked soil, and its reactivity towards the degradation of Aroclor 1242 was investigated. The fabricated ZVI/TiO2 degraded Aroclor 1242 in soil quite effectively, but the creation of remaining dechlorinated compounds, possibly high molecular weight hydrocarbons, in the soil was unavoidable.

부지가 폴리염화비페닐(polychlorinated biphenyls, PCBs)로 오염되면, 심각한 환경 및 건강 위해를 피할 수 없게 된다. 따라서 혁신적이지만 경제성을 지니는 제자리 복원 기술이 오염 부지에 즉시 적용되어야 한다. TCE, PCE 및 DDT와 같은 염소계 유기화합물의 탈염소화를 위하여 최근에는 나노 규모의 영가-철(zero-valent iron, ZVI)이 성공적으로 적용되었고, 지구 지각에서도 풍부하게 존재하는 철은 환경적으로 안전한 것으로 통상적으로 간주된다. 입상 ZVI에 비해 나노 규모 ZVI의 반응성은 훨씬 높지만, 높은 표면에너지와 자기적 물성 때문에 나노 규모 ZVI 입자들은 서로 응결된다. 서로 응결되어 큰 입자로 전환되는 것을 방지하기 위해 먼저 생성된 나노 ZVI 입자들을 가능한 고정화하기 위한 방안으로 TiO2 분말에 나노 ZVI를 담지하였다. FeSO4와 TiO2 분말의 수용액상 슬러리에 NaBH4를 천천히 첨가하여10wt% ZVI/TiO2를 제조하였다. 입자 크기의 불균일성에도 불구하고, 나노 ZVI 입자들이 TiO2 외부 표면에 성공적으로 분산되었다. 제조된 ZVI/TiO2는 PCBs의 표준 물질 일종인 Aroclor 1242로 인위적으로 오염시킨 토양의 PCBs 분해 실험에 적용되었고, Aroclor 1242 분해 성능을 관찰하였다. 제조된 ZVI/TiO2는 Aroclor 1242 분해에 꽤 높은 반응성을 보였지만, 분자량이 큰 탄화수소로 판단되는 화합물이 부산물로 생성되어 토양에 잔류하는 것은 피할 수 없었다.

Keywords

References

  1. Aislabie, J. M., Richards, N. K., and Boul, H. L., "Microbial Degradation of DDT and Its Residues- a review," N. Z. J. Agric. Res., 40, 269-282 (1997).  https://doi.org/10.1080/00288233.1997.9513247
  2. Sayles, G. D., You, G., Wang, M., and Kupferle, M. J., "DDT, DDD, and DDE Dechlorination by Zero-Valent Iron," Environ. Sci. Technol., 31, 3448-3454 (1997).  https://doi.org/10.1021/es9701669
  3. Wang, C.-B. and Zhang, W.-X., "Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs," Environ. Sci. Technol., 31, 2154-2156 (1997).  https://doi.org/10.1021/es970039c
  4. Lien, H.-L. and Zhang, W.-X., "Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes," Colloids Surf. A, 191, 97-105 (2001).  https://doi.org/10.1016/S0927-7757(01)00767-1
  5. Zhang, W. X., "Nanoscale Iron Particles for Environmental Remediation: An overview," J. Nanopart. Res., 5, 323-333 (2003).  https://doi.org/10.1023/A:1025520116015
  6. Singh, S. P., Bose, P., Guha, S., Gurjar, S. K., and Bhalekar, S., "Impact of Additions of Amendments on the Degradation of DDT and Its Residues Partitioned on Soil," Chemosphere, 92, 811-820 (2013).  https://doi.org/10.1016/j.chemosphere.2013.04.025
  7. El-Temsah, Y. S., Oughton, D. H., and Joner, E. J., "Effects of Nanosized Zero-Valent Iron on DDT Degradation and Residual Toxicity in Soil: a Column Experiment," Plant Soil, 368, 189-200 (2013).  https://doi.org/10.1007/s11104-012-1509-8
  8. Yang, S.-C., Lei, M., Chen, T.-B., Li, X.-Y., Liang, Q., and Ma, C., "Application of Zerovalent Iron (Fe(0)) to Enhance Degradation of HCHs and DDX in Soil from a Former Organochlorine Pesticides Manufacturing Plant," Chemosphere, 79, 727-732 (2010).  https://doi.org/10.1016/j.chemosphere.2010.02.046
  9. Arnold, W. A. and Roberts, A. L., "Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles," Environ. Sci. Technol., 34, 1794-1805 (2000).  https://doi.org/10.1021/es990884q
  10. Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., and Lowry, G. V., "Aggregation and Sedimentation of Aqueous Nanoscale Zero Valent Iron Dispersions," Environ. Sci. Technol., 41, 284-290 (2007).  https://doi.org/10.1021/es061349a
  11. Pardoe, H., Chua-Anusorn, W., St. Pierre, T. G., and Dobson, J., "Structural and Magnetic Properties of Nanoscale Iron Oxide Particles Synthesized in the Presence of Dextran or Polyvinyl Alcohol," J. Magn. Magn. Mater., 225, 41-46 (2001).  https://doi.org/10.1016/S0304-8853(00)01226-9
  12. Roh, Y., Cho, K.-S., and Lee, S., "Electrochemical Reduction of Trichloroethene Contaminated Groundwater Using Palladized Iron Oxides," J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 36, 923-933 (2001). 
  13. He, F. and Zhao, D., "Manipulating the Size and Dispersibility of Zero Valent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers," Environ. Sci. Technol., 41, 6216-6221 (2007).  https://doi.org/10.1021/es0705543
  14. Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., and Lowry, G. V., "Surface Modifications Enhance Nano Iron Transport and NAPL Targeting in Saturated Porous Media," Environ. Eng. Sci., 24, 45-57 (2007).  https://doi.org/10.1089/ees.2007.24.45
  15. Nowack, B. and Bucheli, T. D., "Occurrence, Behavior and Effects of Nanoparticles in the Environment," Environ. Pollut., 150, 5-22 (2002).  https://doi.org/10.1016/j.envpol.2007.06.006
  16. Auffan, M., Achouak, W., Rose, J., Roncato, M.-A., Chaneac, C., Waite, D. T., Masion, A., Woicik, J. C., Wiesner, M. R., and Bottero, J.-Y., "Relation between the Redox State of Iron-based Nanoparticles and Their Cytotoxicity toward Escherichia coli.," Environ. Sci. Technol., 42, 6730-6735 (2008).  https://doi.org/10.1021/es800086f
  17. Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., and Sedlak, D. L., "Bactericidal Effect of Zero-valent Iron Nano-Scale Particles on Escherichia coli.," Environ. Sci. Technol., 42, 4927-4933 (2008).  https://doi.org/10.1021/es800408u
  18. Diao, M. and Yao, M., "Use of Zero-valent Iron Nanoparticles in Inactivating Microbes," Water Resour., 43, 5243-5251 (2009). 
  19. Bhanja, K. K., Mohammad, F. A., Tanveer, A., Mohammed, S., Mithlesh K., and Indu A.,"Synthesis and Characterization of Zero-valent Iron Nanoparticles, and the Study of Their Effect Against the Degradation of DDT in Soil and Assessment of Their Toxicity Against Collembola and Ostracods," ACS Omega, 4, 18502-18509 (2019).  https://doi.org/10.1021/acsomega.9b01898
  20. Alcock, R. E., Halsall, C. J., Harris, C. A., Johnston, A., Lead, W. A., Sanders, G., et al., "Contamination of Environmental Samples Prepared for PCB Analysis," Environ. Sci. Technol., 28, 1838-1842 (1994).  https://doi.org/10.1021/es00060a013
  21. Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., et al., "The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds," Toxicol. Sci., 93, 223-241 (2006). doi: 10.1093/toxsci/kfl055 
  22. Schecter, A., Birnbaum, L., Ryan, J. J., and Constable, J. D., "Dioxins: An Overview," Environ. Res., 101, 419-428 (2006). doi: 10.1016/j.envres.2005.12.003 
  23. McFarland, V. A. and Clarke, J. U., "Environmental Occurrence, Abundance, and Potential Toxicity of Polychlorinated Biphenyl Congeners: Considerations for a Congener-specific Analysis," Environ. Health Perspect., 81, 225-239 (1989).  https://doi.org/10.1289/ehp.8981225
  24. Alder, A. C., Haggblom, M. M., Oppenheimer, S. R., and Young, L., "Reductive Dechlorination of Polychlorinated Biphenyls in Anaerobic Sediments," Environ. Sci. Technol., 27, 530-538 (1993).  https://doi.org/10.1021/es00040a012
  25. Tanabe, S., "PCB Problems in the Future: Foresight from Current Knowledge," Environ. Pollut., 50, 5-28 (1988).  https://doi.org/10.1016/0269-7491(88)90183-2
  26. Gomes, H. I., Dias-Ferreira, C., and Ribeiro, A. B., "Overview of in situ and ex situ remediation technologies or PCB-contaminated soils and sediments and obstacles for full-scale application," Sci. Total Environ., 445, 237-260 (2013). doi: 10.1016/j.scitotenv.2012.11.098 
  27. Agarwal, S., Al-Abed, S. R., and Dionysiou, D. D., "In situ Technologies for Reclamation of PCB-contaminated Sediments: Current Challenges and Research Thrust Areas," J. Environ. Eng., 133, 1075-1078 (2007). doi: 10.1061/ (ASCE)0733-9372 (2007)133:12(1075) 
  28. Acar, Y. B. and Alshawabkeh, A. N., "Principles of Electrokinetic Remediation," Environ. Sci. Technol., 27, 2638-2647 (1993).  https://doi.org/10.1021/es00049a002
  29. Gardner, K., Aulisio, D., and Spear, J. M., "In-situ Dechlorination of Polychlorinated Biphenyls in Sediments Using Zero-valent Iron," in PowerPoint Presentation at the RTDF Sediments Meeting, 18-19 (2004). 
  30. Bardos, P., Bone, B., Daly, P., Elliott, D., Jones, S., Lowry, G., et al., "A Risk/Benefit Appraisal for the Application of Nano-Scale Zero Valent Iron (nZVI) for the Remediation of Contaminated Sites," WP9 NanoRem. (2014). 
  31. Ministry of Environment of Korea, "Enforcement Rules of the Soil Environmental Conservation Act(2022.07.22)".