Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01473

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery  

Zheng, Guoxu (Harbin University of Science and Technology)
Yin, Jinghua (Harbin University of Science and Technology)
Guo, Ziqiang (School of Architecture, Chang'an University)
Tian, Shiyi (Zhejiang Post and Telecommunication College, School of Electronic and Communication Engineering)
Yang, Xu (Harbin University of Science and Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.4, 2021 , pp. 458-464 More about this Journal
Abstract
Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.
Keywords
LIBs; ZIF-67; Co/NPC; Electrochemical Performance; Energy Storage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Hao, S. Chen, Y. Cai, J. Mater. Chem. A, 2014, 2(34), 13801-13804.   DOI
2 X. Wang, X.L. Wu, Y.G. Guo, Adv. Funct. Mater., 2010, 20(10), 1680-1686.   DOI
3 N. Venugopal, D.J. Lee, Y.J. Lee, J. Mater. Chem. A, 2013, 1(42), 13164-13170.   DOI
4 H. Gong, Z. Chen, Y. Fan, Renew. Energ., 2015, 83, 144-150.   DOI
5 D. Kong, J. Luo, Y. Wang, Adv. Funct. Mater., 2014, 24 (24), 3815-3826.   DOI
6 J. Chen, X.H. Xia, J.P. Tu, J. Mater. Chem., 2012, 22 (30), 15056-15061.   DOI
7 C.C. Li, Q.H. Li, L.B. Chen, J. Mater. Chem., 2011, 21 (32), 11867-11872.   DOI
8 V. Subramanian, C. Luo, A.M. Stephan, J. Phys. Chem. C, 2007, 111(20), 7527-7531.   DOI
9 M. Arulepp, J. Leis, M. Latt, J. Power Sources, 2006, 162(2), 1460-1466.   DOI
10 Z.S. Wu, W. Ren, L. Wen, ACS Nano, 2010, 4, 3187-3194.   DOI
11 X. Leng, S. Wei, Z. Jiang, Sci. Rep-UK., 2015, 5, 16629.   DOI
12 N.L. Torad, R.R. Salunkhe, Y.Q. Li, Chem-Eur. J., 2014, 20(26), 7895-7900.   DOI
13 L. Wang, Y. Zheng, X. Wang, ACS Appl. Mater. Inter., 2014, 6, 7117-7125.   DOI
14 Y. Gogotsi, A. Nikitin, H. Ye, Nat. Mater., 2003, 2(9), 591.   DOI
15 H. Juan, Carbon, 2010, 48(12), 3599-3606.   DOI
16 W. Chaikittisilp, M. Hu, H. Wang, Chem. Commun., 2012, 48(58), 7259-7261.   DOI
17 S.Y. Tian, G.X. Zheng, Q. Liu, M.Y. Ren, J.H. Yin, Int. J. Electrochem. Sci., 2019, 14, 9459-9467.
18 L. Zhi, Y.S. Hu, B.E. Hamaoui, Adv. Mater., 2008, 20(9), 1727-1731.   DOI
19 Y. Chen, X. Ji, J. Alloy. Compd., 2019, 777, 688-692.   DOI
20 F. Chen, Y.F. Yuan, L.W. Ye, Mater. Lett., 2019, 237, 213-215.   DOI
21 B. Guo, C. Li, Z.Y. Yuan. J. Phys. Chem. C, 2010, 114, 12805-12817.   DOI
22 D. Gu, W. Li, F. Wang, Angew. Chem. Int. Edit., 2015, 54, 7060-7064.   DOI
23 L. Peng, Y. Feng, Y. Bai, J. Mater. Chem. A, 2015, 3, 8825-8831.   DOI
24 X. Leng, Y. Shao, L. Wu, J. Mater. Chem. A, 2016, 4(26), 10304-10313.   DOI
25 G. Huang, F. Zhang, X. Du, ACS Nano, 2015, 9(2), 1592-1599.   DOI