• Title/Summary/Keyword: nano porous

Search Result 431, Processing Time 0.04 seconds

Influence of solvent on the nano porous silica aerogels prepared by ambient drying process (상압건조 나노다공성 실리카 에어로젤에 대한 용매의 영향)

  • Ryu, Sung-Wuk;Kim, Sang-Sig;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.371-377
    • /
    • 2006
  • Nano porous, transparent silica aerogels monoliths were prepared under ambient drying (1 atm, $270^{\circ}C$) condition by the combination of sol-gel process and surface modification with subsequent heat treatment. Three kinds of solvent, n-hexane, n-heptane and xylene, were selected in the point view of low surface tension and vapor pressure in order to restrain a formation of cracks during drying. Crack-free silica aerogels with over 93 % of porosity and below $0.14g/cm^3$ of density were obtained by solvent exchange and surface modification under atmosphere condition. Optimum solvent was confirmed n-heptane among these solvents through estimation of FT-IR, TGA, BET and SEM. Modified silica aerogel exhibited a higher porosity and pore size compare to unmodified aerogels. Hydrophobicity was also controled by C-H and H-OH bonding state in the gel structure and heat treatment over $400^{\circ}C$ effects to the hydrophobicity due to oxidation of C-H radicals.

Electrical Properties of Porous SiO2/ITO Nano Films (다공성 SiO2/ITO 나노박막의 전기적 특성)

  • Sin, Yong-Uk;Kim, Sang-U
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.94-99
    • /
    • 2002
  • The electrical properties of porous $SiO_2/ITO$ nano thin film were studied by complex impedance and conductive mechanisms were analyzed. According to the results of complex impedance, the activation energy of $SiO_2/ITO$ and $Zn-SiO_2/ITO$ were 0.309 eV, 0.077 eV in below $450^{\circ}C$ and 0.147 eV in over $450^{\circ}C$, respectively. In case of $SiO_2/ ITO$, slightly direct tunneling occurred at room temperature. The contribution for conduction was very tiny because of high barrier of silica. However, the conductivity abruptly increased in over $300^{\circ}C$ by Thermally assisted tunneling. In case of $Zn-SiO_2/ITO$, high conductivity in 1.26 ${\Omega}^{ -1}{cdot}cm^{-1}$ at room temperature appeared by space charge conduction or Frenkel-poole emission that Zn ions play a role as localized electron states.

Effect of Current Density on Porous Film Formation in Two-Step Anodizing for Al Alloy

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.125-129
    • /
    • 2016
  • Anodizing is a technology to generate thicker and high-quality films than natural oxide films by treating metals via electrochemical methods. Electrochemical manufacturing method of nano structure is an efficient technology in terms of cost reduction, high productivity and complicated shapes, which receives the spotlight in diverse areas. Especially, artificial films generated by anodizing technology possess excellent mechanical characteristics including hardness and wear resistance. It is also easy to modify thickness and adjust shape of those artificial films so that they are mainly used in sensors, filters, optical films and electrolytic condensers. In this study, experiment was performed to observe the effect of current density on porous film formation in two-step anodizing for Al alloy. Anodizing process was performed with 10 vol.% sulfuric acid electrolyte while the temperature was maintained at $10^{\circ}C$ using a double beaker. and $10{\sim}30mA/cm^2$ was applied for 40 minutes using a galvanostatic method. As a result, both pore diameters and distances between pores tended to increase as the local temperature and electrolysis activity increased due to the increase in applied current density.

Propagation characteristics of longitudinal wave, shear wave and bending wave in porous circular nanoplates

  • Shan, Wubin;Deng, Zulu;Zhong, Hao;Mo, Hu;Han, Ziqiang;Yang, Zhi;Xiang, Chengyu;Li, Shuzhou;Liu, Peng
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.551-559
    • /
    • 2020
  • On the basis of nonlocal strain gradient theory, considering the material properties of porous FGM changing with thickness and the influence of moment of inertia, the wave equation of FG nano circular plate is derived by using the first-order shear deformation plate theory, by introducing dimensionless parameters, we transform the equations into dimensionless wave equations, and the dispersion relations of bending wave, shear wave and longitudinal wave are obtained by Laplace and Hankel integral transformation method. The influence of nonlocal parameter, porosity volume fraction, strain gradient parameters and power law index on the propagation characteristics of bending wave, shear wave and longitudinal wave in FG nano circular plate.

Fabrication and Filtering Test of Nanoparticle-Stabilized Emulsion to be Suitable for Enhanced Oil Recovery (석유증진회수에 적합한 나노 에멀젼의 제조 및 필터링 시험 분석)

  • Son, Han Am;Lee, Keun Ju;Cho, Jang Woo;Im, Kyung Chul;Kim, Jin Woong;Kim, Hyun Tae
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • Researches on the oil recovery enhancement using the nanotechnology has recently been studied in the United States. The previous researches has focused mainly on the flow characteristics of nanoparticles in porous media, and the stability of the nano-emulsion itself. However, the analysis did not deal with the size effects between a nano-emulsion and the pore size which has an important role when nano-emulsion flows in the porous media. In this research, nano-based emulsion was fabricated which is able to be applied for the enhanced oil recovery techniques and its characteristics was analyzed. In addition, in order to identify the characteristics of nano-emulsions flowing through the porous media, the size effect was analysed by filtering test. According to the results, when the emulsion was fabricated, SCA(Silane Coupling Agent) or PVA(Poly Vinyl Alcohol) are added to improve the stability of emulsion. As the ratio of the decane to water increased, the viscosity of emulsion and the droplet size also increased. For the filtering test at the atmospheric conditions, the droplet did not go through the filter; only the separated water from the emulsion was able to be filtered. This phenomenon occurred because the droplet was not able to overcome the capillary pressure. At the filtering test by suction pressure, most of the emulsion was filtered over the filter size of $60{\mu}m$. However, the ratio of filtration was rapidly degraded at less than $45{\mu}m$ filters. This is caused due to deformation and destruction of the droplet by strong shear stress when passing through the pore. The results from the study on the basic characteristic of nano-emulsion and filtering test will be expected to play as the important role for the fabrication of the stable nano-emulsion or the research on the recovery of residual oil in porous media.

Fabrication of Colloidal Clusters of Polymer Microspheres and Nonspherical Hollow Micro-particles from Pickering Emulsions

  • Cho, Young-Sang;Kim, Tae-Yeol;Yi, Gi-Ra;Kim, Young-Kuk;Choi, Chul-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.159-166
    • /
    • 2012
  • We have introduced the Pickering emulsion systems to generate novel confining geometries for the selforganization of monodisperse polymer microspheres using nanoparticle-stabilized emulsion droplets encapsulating the building block particles. Then, through the slow evaporation of emulsion phases by heating, these microspheres were packed into regular polyhedral colloidal clusters covered with nanoparticle-stabilizers made of silica. Furthermore, polymer composite colloidal clusters were burnt out leaving nonspherical hollow micro-particles, in which the configurations of the cluster structure were preserved during calcination. The selfassembled porous architectures in this study will be potentially useful in various applications such as novel building block particles or supporting materials for catalysis or gas adsorption.

Polymer Light-Emitting Diode with Controlled Nano-Structure

  • Park, O-Ok;Lim, Yong-Taik;Park, Jong-Hyeok;Lee, Ho-Chul;Kim, Tae-Ho;Lee, Hang-Ken
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.194-194
    • /
    • 2006
  • Polymer light-emitting diodes(PLEDs) have great potential application in large area flat panel displays and general lighting so intense academic and industrial research, and impressive scientific and technological progress has been achieved in this field. However, the efficiency and stability of PLEDs till need to be improved in order to fully realize the advantages of low cost and ease of fabrication provided by organic materials. Here, we report our effort to enhance the PLED' s performance in two approaches : 1) Utilizing nano-structured materials such as nano particles, clay, nano porous silica in active layer 2) Modifying the device structure in nano scale to improve not only the device efficiency but also its stability.

  • PDF

Densification Behaviour of Magnesium Powders during Cold Isostatic Pressing using the Finite Element Method (유한요소법을 이용한 마그네슘 분말의 냉간정수압 공정시 치밀화 거동 해석)

  • Yoon, Seung-Chae;Kwak, Eun-Jeong;Choi, Won-Hyoung;Kim, Hyoung-Kun;Kim, Taek-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.362-366
    • /
    • 2007
  • Magnesium and magnesium alloys are promising materials for light weight and high strength applications. In order to obtain homogeneous and high quality products in powder compaction and powder forging processes, it is very important to control density and density distributions in powder compacts. In this study, a model for densification of metallic powder is proposed for pure magnesium. The mode] considers the effect of powder characteristics using a pressure-dependent critical density yield criterion. Also with the new model, it was possible to obtain reasonable physical properties of pure magnesium powder using cold iso-state pressing. The proposed densification model was implemented into the finite element method code. The finite element analysis was applied to simulating die compaction of pure magnesium powders in order to investigate the density and effective strain distributions at room temperature.

Fabrication and Characterization of Porous TiO2 Powder by Aerosol Process (에어로졸공정에 의한 다공성 TiO2분말의 제조 및 공극특성)

  • Chang, Han Kwon;Jang, Hee Dong;Park, Jin Ho;Cho, Kuk;Kil, Dae Sup
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.479-485
    • /
    • 2008
  • Porous $TiO_2$ nanostructured particles containing both mesopores and macropores were fabricated by utilizing an aerosol templating method from two kinds of starting materials (colloidal mixture of $TiO_2$ nanoparticles and PS particles, and that of TTIP solution and PS particles). The effects of mixing ratio of PS to $TiO_2$ and reactor temperature on the particle properties were investigated. When $TiO_2$ nanoparticles were used as starting materials, the increase of macropores number was observed by SEM and the specific surface area and total pore volume were increased from $31.6m^2/g$ to $39.1m^2/g$ and $0.068cm^3/g$ to $0.089cm^3/g$, respectively, by increasing the weight mixing ratio of $PS/TiO_2$ from 0.79 to 1.31. When TTIP was used as precursor, the specific surface area and mesopore volume of particles prepared at same condition decreased by 67% and 75%, respectively.

Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution (과량의 니켈 첨가로 합성된 NiO와 Co3O4가 도핑된 La(CoNi)O3 페로브스 카이트의 알칼리용액에서 산소환원 및 발생반응 특성)

  • BO, LING;RIM, HYUNG-RYUL;LEE, HONG-KI;PARK, GYUNGSE;SHIM, JOONGPYO
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • NiO and Co3O4-doped porous La(CoNi)O3 perovskite oxides were prepared from excess Ni addition by a hydrothermal method using porous silica template, and characterized as bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for Zn-air rechargeable batteries in alkaline solution. Excess Ni induced to form NiO and Co3O4 in La(CoNi)O3 particles. The NiO and Co3O4-doped porous La(CoNi)O3 showed high specific surface area, up to nine times of conventionally synthesized perovskite oxide, and abundant pore volume with similar structure. Extra added Ni was partially substituted for Co as B site of ABO3 perovskite structure and formed to NiO and Co3O4 which was highly dispersed in particles. Excess Ni in La(CoNi)O3 catalysts increased OER performance (259 mA/㎠ at 2.4 V) in alkaline solution, although the activities (211 mA/㎠ at 0.5 V) for ORR were not changed with the content of excess Ni. La(CoNi)O3 with excess Ni showed very stable cyclability and low capacity fading rate (0.38 & 0.07 ㎶/hour for ORR & OER) until 300 hours (~70 cycles) but more excess content of Ni in La(CoNi)O3 gave negative effect to cyclability.