에어로졸공정에 의한 다공성 TiO2분말의 제조 및 공극특성

Fabrication and Characterization of Porous TiO2 Powder by Aerosol Process

  • 장한권 (한국지질자원연구원 나노물질연구팀) ;
  • 장희동 (한국지질자원연구원 나노물질연구팀) ;
  • 박진호 (서강대학교 화공생명공학과) ;
  • 조국 (한국지질자원연구원 나노물질연구팀) ;
  • 길대섭 (한국지질자원연구원 나노물질연구팀)
  • Chang, Han Kwon (Nano-materials Group, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang, Hee Dong (Nano-materials Group, Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Jin Ho (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Cho, Kuk (Nano-materials Group, Korea Institute of Geoscience and Mineral Resources) ;
  • Kil, Dae Sup (Nano-materials Group, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2008.01.02
  • 심사 : 2008.01.18
  • 발행 : 2008.06.30

초록

Aerosol templating 법을 이용하여 두 종류의 출발물질 용액($TiO_2$ 나노분말/PS 콜로이드 혼합용액 및 TTIP/PS 혼합용액)으로부터 mesopore 및 macropore를 동시에 가지는 다공성 $TiO_2$ 나노구조체 분말을 제조하였다. $TiO_2$에 대한 PS 분말의 혼합비 및 반응기 온도가 다공성 나노구조체 분말의 특성에 미치는 영향을 조사하였다. $TiO_2$ 나노분말을 출발 물질로 사용한 경우, $PS/TiO_2$ 무게 혼합비를 0.79에서 1.31로 증가시킴에 따라 macropore의 증가가 SEM을 통하여 관찰되었으며 비표면적과 mesopore volume은 각각 $31.6m^2/g$에서 $39.1m^2/g$으로, $0.068cm^3/g$에서 $0.89cm^3/g$으로 증가하였다. TTIP 전구체를 사용한 경우, 동일조건에서 제조한 분말의 비표면적 및 mesopore volume이 각각 67% 및 75% 감소하였다.

Porous $TiO_2$ nanostructured particles containing both mesopores and macropores were fabricated by utilizing an aerosol templating method from two kinds of starting materials (colloidal mixture of $TiO_2$ nanoparticles and PS particles, and that of TTIP solution and PS particles). The effects of mixing ratio of PS to $TiO_2$ and reactor temperature on the particle properties were investigated. When $TiO_2$ nanoparticles were used as starting materials, the increase of macropores number was observed by SEM and the specific surface area and total pore volume were increased from $31.6m^2/g$ to $39.1m^2/g$ and $0.068cm^3/g$ to $0.089cm^3/g$, respectively, by increasing the weight mixing ratio of $PS/TiO_2$ from 0.79 to 1.31. When TTIP was used as precursor, the specific surface area and mesopore volume of particles prepared at same condition decreased by 67% and 75%, respectively.

키워드

과제정보

연구 과제번호 : 융복합기술에 의한 광물자원의 지능형 Eco 소재화 기술 개발

연구 과제 주관 기관 : 한국지질자원연구원

참고문헌

  1. Ollis, D. F., Pelizzetti, E. and Serpone, N., "Destruction of Water Contaminants," Environ. Sci. Technol., 25(9), 1523-1529(1991)
  2. Matthews, R. W., "Photocatalytic Oxidation of Organic Contaminants in Water: An Aid to Environmental Preservation," Pure Appl. Chem., 64(9), 1285-1290(1992) https://doi.org/10.1351/pac199264091285
  3. Hadjiivanov, K. I. and Klissurski, D. G., "Surface Chemistry of Titania (Anatase) and Titania-supported Catalysts," Chem. Soc. Rev., 25(1), 61-69(1996) https://doi.org/10.1039/cs9962500061
  4. Mills, A. and Le Hunte, S., "An Overview of Semiconductor Photocatalysis," J. Photochem. Photobiol. A, 108(1), 1-35(1997) https://doi.org/10.1016/S1010-6030(97)00118-4
  5. Kavan, L., Fattakhova, D. and Krtil, P., "Lithium Insertion into Mesoscopic and Single-crystal $TiO_2$ (Rutile) Electrodes," J. Electrochem. Soc., 146(4), 1375-1379(1999) https://doi.org/10.1149/1.1391773
  6. Li, C., Zheng, Z., Zhang, F., Yang, S., Wang, H., Chen L., Zhang, F., Wang, X. and Liu, X., "$TiO_{2-x}$ Films Prepared by Ion Beam Assisted Deposition," Nucl. Instrum. Methods. Phys. Res. B, 169(1-4), 21-25(2000) https://doi.org/10.1016/S0168-583X(00)00010-0
  7. Savage, N. O. Akbar, S. A. and Dutta, P. K., "Titanium Dioxides Based High Temperature Carbon Monoxide Selective Sensor," Sens. Actuators B, 72(3), 239-248(2001) https://doi.org/10.1016/S0925-4005(00)00676-6
  8. Grtzel, M., "Sol-gel Processed $TiO_2$ Films for Photovoltaic Applications," J. Sol-Gel Sci. Technol., 22(1-2), 7-13(2001) https://doi.org/10.1023/A:1011273700573
  9. Fotou, G. P., Vemury, S. and Pratsinis, S. E., "Synthesis and Evaluation of Titania Powders for Photodestruction of Phenol," Chem. Eng. Sci., 49(24B), 4939-4948(1994) https://doi.org/10.1016/0009-2509(94)00394-7
  10. Arabi-Katbi, O. I., Wegner, K. and Pratsinis, S. E., "Aerosol Synthesis of Titania Nanoparticles: Effect of Flame Orientation and Configuration," Ann. Chim. Sci. Mat., 27(6), 37-46(2002)
  11. Jang, H. D. and Kim, S.-K., "Controlled Synthesis of Titanium Dioxide Nanoparticles in a Modified Diffusion Flame Reactor," Mater. Res. Bull., 36(3-4), 627-637(2001) https://doi.org/10.1016/S0025-5408(01)00552-9
  12. Jung, K. Y., Park, S. B. and Jang, H. D., "Phase Control and Photocatalytic Properties of Nano-sized Titania Particles by Gasphase Pyrolysis of $TiCl_4$," Catal. Commun., 5(9), 491-497(2004) https://doi.org/10.1016/j.catcom.2004.05.016
  13. Nakaso, K., Okuyama, K., Shimada, M. and Pratsinis, S. E., "Effect of Reaction Temperature on CVD-made $TiO_2$ Primary Particle Diameter," Chem. Eng. Sci., 58(15), 3327-3335(2003) https://doi.org/10.1016/S0009-2509(03)00213-6
  14. Jang, H. D. and Jeong, J., "The Effects of Temperature on Particle Size in Gas-phase Production of $TiO_2$," Aerosol Sci. Technol., 23(4), 553-560(1995) https://doi.org/10.1080/02786829508965337
  15. Velev, O. D., Jede, T. A., Lobo,, R. F. and Lenhoff, A. M., "Porous Silica via Colloidal Crystallization," Nature, 389, 447-448(1997)
  16. Holland, B. T., Blanford, C. F. and Stein, A., "Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids," Science, 281, 538-540(1998) https://doi.org/10.1126/science.281.5376.538
  17. Wijnhoven, J. E. G. J. and Vos, W. L., "Preparation of Photonic Crystals Made of Air Spheres in Titania," Science, 281, 802-804 (1998) https://doi.org/10.1126/science.281.5378.802
  18. Stein, A., "Sphere Templating Methods for Periodic Porous Solids," Microporous Mesoporous Mater., 44-45, 227-239(2001) https://doi.org/10.1016/S1387-1811(01)00189-5
  19. Iskandar, F., Mikrajuddin, Okuyama, "In Situ Production of Spherical Silica Particles Containing Self-organized Mesopores," Nano Lett., 1(5), 231-234(2001) https://doi.org/10.1021/nl0155227
  20. Iskandar, F., Mikrajuddin, Okuyama, K., "Controllability of Pore Size and Porosity on Self-organized Porous Silica Particles," Nano Lett., 2(4), 389-392(2002) https://doi.org/10.1021/nl015662g
  21. Iskandar, F., Nandiyanto, A. B. D., Yun, K. M., Hogan, C. J., Jr., Okuyama, K. and Biswas, B., "Enhanced Photocatalytic Performance of Brookite $TiO_2$ Macroporous Particles Prepared by Spray Drying with Colloidal Templating," Adv. Mater., 19, 1408- 1412(2007) https://doi.org/10.1002/adma.200601822
  22. Landfester, K., Bechthold, N., Tiarks, F. and Antonietti, M., "Formulation and Stability Mechanisms of Polymerizable Miniemulsions," Macromolecules, 32(16), 5222-5228(1999) https://doi.org/10.1021/ma990299+