Browse > Article
http://dx.doi.org/10.12989/sem.2020.76.4.551

Propagation characteristics of longitudinal wave, shear wave and bending wave in porous circular nanoplates  

Shan, Wubin (Hunan Electrical College of Technology, School of elevator engineering)
Deng, Zulu (Hunan Electrical College of Technology, School of elevator engineering)
Zhong, Hao (Hunan Electrical College of Technology, School of elevator engineering)
Mo, Hu (Hunan Electrical College of Technology, School of elevator engineering)
Han, Ziqiang (Hunan Electrical College of Technology, School of elevator engineering)
Yang, Zhi (Hunan Electrical College of Technology, School of elevator engineering)
Xiang, Chengyu (Hunan Electrical College of Technology, School of elevator engineering)
Li, Shuzhou (Hunan Electrical College of Technology, School of elevator engineering)
Liu, Peng (School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology)
Publication Information
Structural Engineering and Mechanics / v.76, no.4, 2020 , pp. 551-559 More about this Journal
Abstract
On the basis of nonlocal strain gradient theory, considering the material properties of porous FGM changing with thickness and the influence of moment of inertia, the wave equation of FG nano circular plate is derived by using the first-order shear deformation plate theory, by introducing dimensionless parameters, we transform the equations into dimensionless wave equations, and the dispersion relations of bending wave, shear wave and longitudinal wave are obtained by Laplace and Hankel integral transformation method. The influence of nonlocal parameter, porosity volume fraction, strain gradient parameters and power law index on the propagation characteristics of bending wave, shear wave and longitudinal wave in FG nano circular plate.
Keywords
lexural wave; shear wave; longitudinal wave; circular nanoplate; nonlocal strain gradient theory;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Malikan, M. and Nguyen, V.B. (2018), "Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory", Physica E, 102, 8-28. https://doi.org/10.1016/j.physe.2018.04.018   DOI
2 Malikan, M., Nguyen, V.B. and Tornabene, F. (2018), "Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory", Mater. Res. Express,5(75031), 1-20. https://doi.org/10.1088/2053-1591/aad144.   DOI
3 Akgoz, B. and Civalek, O. (2017a), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039   DOI
4 Akgoz, B. and Civalek, O. (2017b), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024   DOI
5 Arefi, M. (2016), "Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage", Appl. Math. Mech. (English Edition), 37(3), 289-302. https://doi.org/10.1007/s10483-016-2039-6   DOI
6 Arefi, M. and Zenkour, A.M. (2017), "Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Commun., 79, 51-62. https://doi.org/10.1016/j.mechrescom.2017.01.004   DOI
7 Arefi, M., and Zenkour, A. M. (2016), "Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory", Mater. Res. Express, 3(11), 115704. https://doi.org/10.1088/2053-1591/3/11/115704   DOI
8 Aria, A.I. and Biglari, H. (2018), "Computational vibration and buckling analysis of microtubule bundles based on nonlocal strain gradient theory", Appl. Math. Comput., 321, 313-332. https://doi.org/10.1016/j.amc.2017.10.050   DOI
9 Barati, M.R. (2017), "On wave propagation in nanoporous materials", Int. J. Eng. Sci., 116, 1-11. https://doi.org/10.1016/j.ijengsci.2017.03.007.   DOI
10 Agwa, M. A. and Eltaher, M. A. (2016), "Vibration of a carbyne nanomechanical mass sensor with surface effect", Appl. Phys. A, 122, 335. https://doi.org/10.1007/s00339-016-9934-9   DOI
11 Ebrahimi, F. and Barati, M. R. (2016a), "Wave propagation analysis of quasi-3d fg nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1   DOI
12 Ebrahimi, F., and Barati, M. R. (2016b), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stress., 40(4-6), 1-16. https://doi.org/10.1080/01495739.2016.1254076   DOI
13 Ebrahimi, F., and Barati, M. R. (2016c), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", App. Phys. A, 122(4), 451. https://doi.org/10.1007/s00339-016-0001-3   DOI
14 Ebrahimi, F., and Barati, M. R. (2016d), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122, 451. https://doi.org/10.1007/s00339-016-0001-3   DOI
15 Ebrahimi, F. and Barati, M.R. (2017a), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092   DOI
16 Ebrahimi, F. and Barati, M.R. (2017b), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058   DOI
17 Malikan, M., Krasheninnikov, M., and Eremeyev, M.V. (2020), "Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field", Int. J. Eng. Sci., 148, 103210. https://doi.org/10.1016/j.ijengsci.2019.103210   DOI
18 Melaibari, A., Abo-Bakr, R. M. , Mohamed, S. A. , and Eltaher, M. A. (2020), "Static stability of higher order functionally graded beam under variable axial load", Alex. Eng. J., 59(3), 1661-1675. https://doi.org/10.1016/j.aej.2020.04.012   DOI
19 Melaibari, A., Khoshaim, A.B., Mohamed, S.A., and Eltaher, M.A. (2020), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671   DOI
20 Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solid Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.   DOI
21 Sun, D. and Luo, S.N. (2012), "Wave propagation and transient response of a functionally graded material plate under a point impact load in thermal environments", Appl. Math. Model., 36(1), 444-462. https://doi.org/10.1016/j.apm.2011.07.023   DOI
22 Zhang, H., Wang, C.M., Challamel, N, and Pan, W.H. (2020), "Calibration of Eringen's small length scale coefficient for buckling circular and annular plates via Hencky bar-net model", Appl. Math. Model., 78, 399-417. https://doi.org/10.1016/j.apm.2019.09.052   DOI
23 Zhu, F., Pan E, Qian Z, and Wang Y. (2019), "Dispersion curves, mode shapes, stresses and energies of SH and Lamb waves in layered elastic nanoplates with surface/interface effect", Int. J. Eng. Sci., 142,170-184. https://doi.org/10.1016/j.ijengsci.2019.06.003   DOI
24 Barati, M.R., and Zenkour, A. (2017), "A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate", Compos. Struct., 68, 885-892. https://doi.org/10.1016/j.compstruct.2017.02.090   DOI
25 Zur, K.K. (2019), "Free vibration analysis of discrete-continuous functionally graded circular plate via the Neumann series method", Appl. Math. Model., 73, 166-189. https://doi.org/10.1016/j.apm.2019.02.047   DOI
26 Ebrahimi, F. and Barati, M.R. (2017c), "Flexural wave propagation analysis of embedded s-fgm nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 42(5), 1715-1726. https://doi.org/10.1007/s13369-016-2266-4   DOI
27 Ebrahimi, F., Barati, M. R., and Haghi, P. (2017a), "Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory", J. Vib. Control, 24(17), 3809-3818. https://doi.org/10.1177/1077546317711537   DOI
28 Ebrahimi, F., Barati, M. R., and Haghi, P. (2017b), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stresses, 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483   DOI
29 Ebrahimi, F., Barati, M. R., and Haghi, P. (2016), "Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams", Euro. Phys. J. Plus, 131(11), 383. https://doi.org/10.1140/epjp/i2016-16383-0.   DOI
30 Ebrahimi, F., Barati, M.R., and Dabbagh, A. (2016a), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", J. Eng. Sci., 107, 169-182.https://doi.org/10.1016/j.ijengsci.2016.07.008   DOI
31 Ebrahimi, F. , Barati, M. R. and Dabbagh, A. (2016b), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci.,107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008   DOI
32 Ebrahimi, F. and Dabbagh, A. (2017a), "Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams", Euro. Phys. J. Plus, 132(4), 153. https://doi.org/10.1140/epjp/i2017-11366-3   DOI
33 Ebrahimi, F. , and Dabbagh, A. (2017b), "Nonlocal strain gradient based wave dispersion behavior of rotating magneto-electro-elastic nanoplates", Mater. Res. Express, 4(2), 025003. https://doi.org/10.1088/2053-1591/aa55b5   DOI
34 Ebrahimi, F., and Dabbagh, A. (2017c), "On flexural wave propagation responses of smart fg magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058   DOI
35 Ebrahimi, F. , and Dabbagh, A. (2017d), "Nonlocal strain gradient based wave dispersion behavior of rotating magneto-electro-elastic nanoplates", Mater. Res. Express, 4(2), 025003. https://doi.org/10.1088/2053-1591/aa55b5   DOI
36 Ebrahimi, F. and Dabbagh, A. (2018), "Wave dispersion characteristics of orthotropic double-nanoplate-system subjected to a longitudinal magnetic field", Microsyst. Technol., 24(7), 2929-2939. https://doi.org/10.1007/s00542-018-3738-0.   DOI
37 Ebrahimi, F. , Dabbagh, A. , and Barati, M. R. (2016), "Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate", Euro. Phys. J. Plus, 131(12), 433. https://doi.org/10.1140/epjp/i2016-16433-7   DOI
38 Ebrahimi, F. and Haghi, P. (2017), "Wave propagation analysis of rotating thermoelastically-actuated nanobeams based on nonlocal strain gradient theory", Acta Mech. Solida Sin., 30(6), 647-657. https://doi.org/10.1016/j.camss.2017.09.007   DOI
39 Ebrahimi, F., and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mechanics of Composite Materials & Structures, 24(10), 820-829. https://doi.org/10.1080/15376494.2016.1196786.   DOI
40 Ebrahimi, F., and Shafiei, N. (2016), "Application of eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837   DOI
41 Ebrahimi, F., Salari, E., and Hosseini, S. A. H. (2015), "Thermomechanical vibration behavior of fg nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980   DOI
42 Ebrahimi, F., and Salari, E. (2015a), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007   DOI
43 Ebrahimi, F., and Salari, E. (2015b), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES-Comp. Model. Eng., 105(2), 151-181. https://doi.org/10.3970/cmes.2015.105.151   DOI
44 Eltaher, M.A., El-Borgi S. and Reddy J.N. (2016), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013   DOI
45 Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026   DOI
46 Eltaher, M.A., Attia, M.A., Soliman, A.E. and Alshorbagy, A.E. (2018), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., Int. J., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097   DOI
47 Eltaher, M.A. and Mohamed, N. (2020a), "Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics", Appl. Math. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.   DOI
48 Eltaher, M.A. and Mohamed, N.A. (2020b), "Vibration of nonlocal perforated nanobeams with general boundary conditions", Smart. Struct. Syst., 25(4), 501-514. https://doi.org/10.12989/sss.2020.25.4.501.   DOI
49 Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res.Sw, 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136 .   DOI
50 Eltaher, M. A., Almalki, T. A., Almitani, K. H., Ahmed, K. I. E., and Abdraboh, A. M. (2019), "Modal participation of fixed-fixed single-walled carbon nanotube with vacancies", J. Adv. Struct. Eng., 11, 151-163. https://doi.org/10.1007/s40091-019-0222-8.   DOI
51 Eltaher, M. A., Omar, F. A., Abdalla, W. S. and Gad, E. H. (2019), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Wave. Random Complex, 29(2), 264-280. https://doi.org/10.1080/17455030.2018.1429693   DOI
52 Eltaher, M. A., Mahmoud, F. F., Assie, A. E., and Meletis, E. I. (2013), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002.   DOI
53 Emam, S.A., Eltaher, M.A., Khater, M.E., and Abdalla, W.S (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci.-Basel, 8(11), 2238. https://doi.org/10.3390/app8112238.   DOI
54 Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S., and Alshorbagy, A.E. (2020), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart. Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.   DOI
55 Eltaher, M. A., Fouda, N. , El-Midany, T. , and Sadoun, A. M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Braz. Soc. Mech. Sci., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0.   DOI
56 Eringen, A.C. (1998), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
57 Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.   DOI
58 Faleh, N.M., Fenjan, R.M., and Ahmed, R.A. (2018), "Dynamic analysis of graded small-scale shells with porosity distributions under transverse dynamic loads", Euro. Phys. J. Plus, 133(9), 348. https://doi.org/10.1140/epjp/i2018-12152-5   DOI
59 Faroughi, S., Rahmani, A., and Friswell, M.I. (2020), "On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model", Appl. Math. Model., 80, 169-190. https://doi.org/10.1016/j.apm.2019.11.040   DOI
60 Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2018), "Nonlinear oscillations of functionally graded microplates", Int. J. Eng. Sci., 122, 56-72. https://doi.org/10.1016/j.ijengsci.2017.03.014   DOI
61 Ghayesh, M.H., Farokhi, H., and Farajpour, A. (2019), "Chaos in fluid-conveying NSGT nanotubes with geometric imperfections", Appl. Math. Model., 74, 708-730. https://doi.org/10.1016/j.apm.2019.04.053   DOI
62 Eltaher, M.A., Hamed, M.A., Sadoun, A.M., Mansour, A.A. (2014) "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Comput., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076.   DOI
63 Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30, 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3   DOI
64 Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.   DOI
65 Hamed, M.A., Eltaher, M.A., Sadoun, A.M., and Almitani, K. H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A-Mater., 122(9), 829. https://doi.org/10.1007/s00339-016-0324-0   DOI
66 Hamed, M. A., Sadoun, A. M., and Eltaher, M. A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089   DOI
67 Hamed, M. A., Abo-Bakr, R. M., Mohamed, S. A. , and Eltaher, M. A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4),1929-1946. https://doi.org/10.1007/s00366-020-01023-w   DOI
68 Li, A., Ji, X., Zhou, S.S., Wang, L., Chen, J., and Liu, P.B. (2020), "Nonlinear axisymmetric bending analysis of strain gradient thin circular plate", Appl. Math. Model., 89, 363-380. https://doi.org/10.1016/j.apm.2020.08.004   DOI