Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.1.41

Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution  

BO, LING (Department of Nano & Chemical Engineering, Kunsan National University)
RIM, HYUNG-RYUL (Fuel Cell Regional Innovation Center, Woosuk University)
LEE, HONG-KI (Fuel Cell Regional Innovation Center, Woosuk University)
PARK, GYUNGSE (Department of Chemistry, Kunsan National University)
SHIM, JOONGPYO (Department of Nano & Chemical Engineering, Kunsan National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.1, 2021 , pp. 41-52 More about this Journal
Abstract
NiO and Co3O4-doped porous La(CoNi)O3 perovskite oxides were prepared from excess Ni addition by a hydrothermal method using porous silica template, and characterized as bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for Zn-air rechargeable batteries in alkaline solution. Excess Ni induced to form NiO and Co3O4 in La(CoNi)O3 particles. The NiO and Co3O4-doped porous La(CoNi)O3 showed high specific surface area, up to nine times of conventionally synthesized perovskite oxide, and abundant pore volume with similar structure. Extra added Ni was partially substituted for Co as B site of ABO3 perovskite structure and formed to NiO and Co3O4 which was highly dispersed in particles. Excess Ni in La(CoNi)O3 catalysts increased OER performance (259 mA/㎠ at 2.4 V) in alkaline solution, although the activities (211 mA/㎠ at 0.5 V) for ORR were not changed with the content of excess Ni. La(CoNi)O3 with excess Ni showed very stable cyclability and low capacity fading rate (0.38 & 0.07 ㎶/hour for ORR & OER) until 300 hours (~70 cycles) but more excess content of Ni in La(CoNi)O3 gave negative effect to cyclability.
Keywords
Perovskite; $LaCoO_3$ (Lanthanum cobaltite); Oxygen reduction; Oxygen evolution; Catalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Kim, K. Lopez, H. J. Sun, J. C. An, G. Park, and J. Shim, "Electrochemical performance of bifunctional Co/graphitic carbon catalysts prepared from metal-organic frameworks for oxygen reduction and evolution reactions in alkaline solution", J. Appl. Electrochem., Vol. 48, 2018, pp. 1231-1241, doi: https://doi.org/10.1007/s10800-018-1245-8.   DOI
2 J. Shim, K. J. Lopez, H. J. Sun, G. Park, J. C. An, S. Eom, S. Shimpalee, and J. W. Weidner, "Preparation and characterization of electrospun LaCoO3 fibers for oxygen reduction and evolution in rechargeable Zn-air batteries", J. Appl. Electrochem., Vol. 45, 2015, pp. 1005-1012, doi: https://doi.org/10.1007/s10800-015-0868-2.   DOI
3 Y. Li, H. Dai, "Recent advances in zinc-air batteries", Chem. Soc. Rev., Vol. 43, No. 15, 2014, pp. 5257-5275, doi: https://doi.org/10.1039/C4CS00015C.   DOI
4 S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A. R. Kim, S. Sengodan, and D. J. Yoo, "Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc-air batteries", Appl. Cat. B: Environ., Vol. 279, 2020, pp. 119381, doi: https://doi.org/10.1016/j.apcatb.2020.119381.   DOI
5 Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, "Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application", Nano Lett., Vol. 12, No. 4, 2012, pp. 1946-1952, doi: https://doi.org/10.1021/nl2044327.   DOI
6 W. G. Hardin, D. A. Slanac, X. Wang, S. Dai, K. P. Johnston, and K. J. Stevenson, "Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes", J. Phys. Chem. Lett., Vol. 4, 2013, pp. 1254-1259, doi: https://doi.org/10.1021/jz400595z.   DOI
7 Y. Xue, S. Sun, Q. Wang, Z. Donga and Z. Liu, "Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes", J. Mater. Chem. A, Vol. 23, 2018, pp. 10595-10626, doi: https://doi.org/10.1039/c7ta10569j.   DOI
8 Z. Shao and S. M. Haile, "A high-performance cathode for the next generation of solid-oxide fuel cells", Nature, Vol. 431, 2004, pp. 170-173, doi: https://doi.org/10.1038/nature02863.   DOI
9 W. Zhou, R. Ran, and Z. Shao, "Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review", J. Power Sources, Vol. 192, No. 2, 2009, pp. 231-246, doi: https://doi.org/10.1016/j.jpowsour.2009.02.069.   DOI
10 D. Zhang, Y. Song, Z. Du, L. Wang, Y. Li, and J. B. Goodenough, "Active LaNi1-xFexO3 bifunctional catalysts for air cathodes in alkaline media", J. Mater. Chem. A, Vol. 3, No. 18, 2015, pp. 9421-9426, doi: https://doi.org/10.1039/C5TA01005E.   DOI
11 J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, and X. W. Lou, "Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage", Adv. Mater. Vol. 24, No. 38, 2012, pp. 5166-5180, doi: https://doi.org/10.1002/adma.201202146.   DOI
12 S. Guo, S. Zhang, and S. Sun, "Tuning nanoparticle catalysis for the oxygen reduction reaction", Angew. Chem. Int. Ed., Vol. 52, No. 33, 2013, pp. 8526-8544, doi: https://doi.org/10.1002/anie.201207186.   DOI
13 J. H. Yang, H. J. Sun, G. Park, J. C. An, and J. Shim. "Synthesis of highly porous LaCoO3 catalyst by nanocasting and its performance for oxygen reduction and evolution reactions in alkaline solution", J. Electroceram., Vol. 41, 2018, pp. 80-87, doi: https://doi.org/10.1007/s10832-018-0165-7.   DOI
14 V. Elayappan, R. Shanmugam, S. Chinnusamy, D. J. Yoo, G. Mayakrishnan, K. Kim, H. S. Noh, M. K. Kim, and H. Lee, "Three-dimensional bimetal TMO supported carbon based electrocatalyst developed via dry synthesis for hydrogen and oxygen evolution", Appl. Surf. Sci., Vol. 505, 2020, pp. 144642, doi: https://doi.org/10.1016/j.apsusc.2019.144642.   DOI
15 S. W. Eom, C. W. Lee, M. S. Yun, and Y. K. Sun, "The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes", Electrochim. Acta, Vol. 52, No. 4, 2006, pp. 1592-1595, doi: https://doi.org/10.1016/j.electacta.2006.02.067.   DOI
16 R. Kannan, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell", Chem. Commun., Vol. 50, No. 93, 2014, pp. 14623-14626, doi: https://doi.org/10.1039/C4CC06879C.   DOI
17 S. Ramakrishnan, M. Karuppannan, M. Vinothkannan, K. Ramachandran, O. J. Kwon, and D. J. Yoo, "Ultrafine Pt nanoparticles stabilized by MoS2/N-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions", ACS Appl. Mater. Interfaces, Vol. 11, No. 13, 2019, pp. 12504-12515, doi: https://doi.org/10.1021/acsami.9b00192.   DOI
18 K. Lopez, G. Park, H. J. Sun, J. C. An, S. Eom, and J. Shim, "Electrochemical characterizations of LaMO3 (M = Co, Mn, Fe, and Ni) and partially substituted LaNixM1-xO3 (x= 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution", J. Appl. Electrochem., Vol. 45, 2015, pp. 313-323, doi: https://doi.org/10.1007/s10800-015-0798-z.   DOI
19 J. J. Xu, D. Xu, Z. L. Wang, H. G. Wang, L. L. Zhang, and X. B. Zhang, "Synthesis of perovskite‐based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries", Angew. Chem. Int. Ed., Vol. 52, No. 14, 2013, pp. 3887-3890, doi: https://doi.org/10.1002/anie.201210057.   DOI
20 J. Deng, L. Zhang, H. Dai, and C. T. Au, "In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts: high activity for the complete oxidation of toluene and ethyl acetate", Appl. Cat. A: General, Vol. 352, No. 1-2, 2009, pp. 43-49, doi: https://doi.org/10.1016/j.apcata.2008.09.037.   DOI
21 M. Mao, J. Xu, M. Zhu, Y. Li, and Z. Liu, "Highly efficient catalytic hydrogen production of Co(OH)2-modified rare-earth perovskite LaNiO3 composite under visible light", Appl Nanosci, Vol. 10, 2020, pp. 4361-4374, doi: https://doi.org/10.1007/s13204-020-01343-9.   DOI
22 R. Robert, L. Bocher, B. Sipos, M. Dobeli, and A. Weidenkaff, "Ni-doped cobaltates as potential materials for high temperature solar thermoelectric converters", Prog. Solid State Chem., Vol. 35, No. 2-4, 2007, pp. 447-455, doi: https://doi.org/10.1016/j.progsolidstchem.2007.01.020.   DOI
23 S. Q. Chen and Y. Liu, "LaFeyNi1-yO3 supported nickel catalysts used for steam reforming of ethanol", Int. J. Hydrogen Energy, Vol. 34, No. 11, 2009, pp. 4735-4746, doi: https://doi.org/10.1016/j.ijhydene.2009.03.048.   DOI
24 M. Mousavi and A. N. Pour, "Performance and structural features of LaNi0.5Co0.5O3 perovskite oxides for the dry reforming of methane: influence of the preparation method", New J. Chem., Vol. 43, No. 27, 2019, pp. 10763-10773, doi: https://doi.org/10.1039/C9NJ01805K.   DOI
25 J. Yang and T. Sasaki, "Synthesis of CoOOH hierarchically hollow spheres by nanorod self-assembly through bubble templating", Chem. Mater., Vol. 20, No. 5, 2008, pp. 2049-2056, doi: https://doi.org/10.1021/cm702868u.   DOI
26 J. A. Villoria, M. C. Alvarez-Galvan, S. M. Al-Zahrani, P. Palmisano, S. Specchia, V. Specchia, J. L. G. Fierro, and R. M. Navarro, "Oxidative reforming of diesel fuel over LaCoO3 perovskite derived catalysts: influence of perovskite synthesis method on catalyst properties and performance", Appl. Catalysis B: Environmental, Vol. 105, No. 3-4, 2011, pp. 276-288, doi: https://doi.org/10.1016/j.apcatb.2011.04.010.   DOI
27 M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni", Appl. Surf. Sci., Vol. 257, No. 7, 2011, pp. 2717-2730, doi: https://doi.org/10.1016/j.apsusc.2010.10.051.   DOI
28 J. Huang, J. Chen, T. Yao, J. He, S. Jiang, Z. Sun, Q. Liu, W. Cheng, F. Hu, Y. Jiang, Z. Pan, and S. Wei, "CoOOH nanosheets with high mass activity for water oxidation", Angew. Chem., Vol. 54, No. 30, 2015, pp. 8722-8727, doi: https://doi.org/10.1002/anie.201502836.   DOI
29 J. F. Moulder, W. F. Stickle, P. E'Sobol, and K. D. Bomben, "Handbook of X-ray photoelectron spectroscopy", PerkinElmer Corporation, USA, 1992.
30 H. Wang, W. Xu, S. Richins, K. Liaw, L. Yan, M. Zhou, and H. Luo, "Polymer-assisted approach to LaCo1-xNixO3 network nanostructures as bifunctional oxygen electrocatalysts", Electrochim. Acta, Vol. 296, 2019, pp. 945-953, doi: https://doi.org/10.1016/j.electacta.2018.11.075.   DOI
31 P. T. Babar, A. C. Lokhande, M. G. Gang, B. S. Pawar, S. M. Pawar, and J. H. Kim, "Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application", J. Ind. Eng. Chem., Vol. 60, 2018, pp. 493-497, doi: https://doi.org/10.1016/j.jiec.2017.11.037.   DOI
32 A. Moysiadou, S. Lee, C. S. Hsu, H. M. Chen, and X. Hu, "Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step", J. Am. Chem. Soc., Vol. 142, No. 27, 2020, pp. 11901-11914, doi: https://doi.org/10.1021/jacs.0c04867.   DOI
33 J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu, Y. Huang, S. Yan, J. Li, and S. Zhang, "Electrochemically accessing ultrathin Co (oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction", Energy Environ. Sci., Vol. 12, No. 2, 2019, pp. 739-746, doi: https://doi.org/10.1039/C8EE03208D.   DOI
34 A. Bergmann, T. E. Jones, E. M. Moreno, D. Teschner, P. Chernev, M. Gliech, T. Reier, H. Dau, and P. Strasser, "Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction", Nature Cat., Vol. 1, 2018, pp. 711-719, doi: https://doi.org/10.1038/s41929-018-0141-2.   DOI