DOI QR코드

DOI QR Code

Densification Behaviour of Magnesium Powders during Cold Isostatic Pressing using the Finite Element Method

유한요소법을 이용한 마그네슘 분말의 냉간정수압 공정시 치밀화 거동 해석

  • Yoon, Seung-Chae (Department of Nano Materials Engineering, Chungnam National University) ;
  • Kwak, Eun-Jeong (Department of Nano Materials Engineering, Chungnam National University) ;
  • Choi, Won-Hyoung (Department of Nano Materials Engineering, Chungnam National University) ;
  • Kim, Hyoung-Kun (Department of Nano Materials Engineering, Chungnam National University) ;
  • Kim, Taek-Soo (Korea Institute of Industrial Technology) ;
  • Kim, Hyoung-Seop (Department of Nano Materials Engineering, Chungnam National University)
  • Published : 2007.12.28

Abstract

Magnesium and magnesium alloys are promising materials for light weight and high strength applications. In order to obtain homogeneous and high quality products in powder compaction and powder forging processes, it is very important to control density and density distributions in powder compacts. In this study, a model for densification of metallic powder is proposed for pure magnesium. The mode] considers the effect of powder characteristics using a pressure-dependent critical density yield criterion. Also with the new model, it was possible to obtain reasonable physical properties of pure magnesium powder using cold iso-state pressing. The proposed densification model was implemented into the finite element method code. The finite element analysis was applied to simulating die compaction of pure magnesium powders in order to investigate the density and effective strain distributions at room temperature.

Keywords

References

  1. S. Y. Chang, S. W. Lee, K. M. Kang, S. Kamado and Y. Kojima: Mater. Trans., 45 (2004) 488 https://doi.org/10.2320/matertrans.45.488
  2. S. Y. Chang, H. Tezuka and A. Kamio: Mater. Trans., 38 (1997) 526 https://doi.org/10.2320/matertrans1989.38.526
  3. M. Mabuchi, H. lwahashi, K. Yanase and K. Higashi: Scripta Mater., 36 (1997) 681 https://doi.org/10.1016/S1359-6462(96)00444-7
  4. S. R. Agnew, J. A. Horton, T. M. Lillo and D. W. Brown: Scripta Mater., 50 (2004) 377 https://doi.org/10.1016/j.scriptamat.2003.10.006
  5. D. W. Brown, S. R. Agnew, M. A. M. Bourke, T. M. Holden, S. C. Vogel and C. N. Tome: Mater. Sci. Eng. A, 399 (2005) 1 https://doi.org/10.1016/j.msea.2005.02.016
  6. Y. Wei and L. Anand: Acta Mater., 55 (2007) 921 https://doi.org/10.1016/j.actamat.2006.09.014
  7. H. S. Kim and D. N. Lee: J. Kor. Inst. Met. Metal., 30 (1992) 37 (Korean)
  8. H. S. Kim: J. Kor. Inst. Met. Metal., 38 (2000) 817 (Korean)
  9. S. C. Yoon, H. S. Kim and C. K. Lee: J. Kor. Powder Metall. Inst., 11 (2004) 341 (Korean) https://doi.org/10.4150/KPMI.2004.11.4.341
  10. C. Suryanarayana: Ins. Mater. Rev., 40 (1995) 41 https://doi.org/10.1179/imr.1995.40.2.41
  11. K. Lu: Mater. Sci. Eng. Rep. R, 16 (1996) 161 https://doi.org/10.1016/0927-796X(95)00187-5
  12. R. W. Siegel: Nanostruct. Mater., 4 (1994) 121 https://doi.org/10.1016/0965-9773(94)90134-1
  13. R. Birrnger, H. Gleiter, H. P. Klein and P. Marquardt: Phys. Lett. A, 102 (1984) 365 https://doi.org/10.1016/0375-9601(84)90300-1
  14. S. C. Yoon, S. J. Hong, M. H. Seo, Y. G. Jeong and H. S. Kim: J. Kor. Powder Metall. Inst., 11 (2004) 233 (Korean) https://doi.org/10.4150/KPMI.2004.11.3.233
  15. H. S. Kim: Mater. Sci. Eng. A, 251 (1998) 100 https://doi.org/10.1016/S0921-5093(98)00635-2

Cited by

  1. Finite element analysis of the bending behavior of a workpiece in equal channel angular pressing vol.15, pp.2, 2009, https://doi.org/10.1007/s12540-009-0215-4