• Title/Summary/Keyword: nano electron device

Search Result 115, Processing Time 0.036 seconds

The Pulsed Id-Vg methodology and Its Application to the Electron Trapping Characterization of High-κ gate Dielectrics

  • Young, Chadwin D.;Heh, Dawei;Choi, Ri-No;Lee, Byoung-Hun;Bersuker, Gennadi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.79-99
    • /
    • 2010
  • Pulsed current-voltage (I-V) methods are introduced to evaluate the impact of fast transient charge trapping on the performance of high-k dielectric transistors. Several pulsed I-V measurement configurations and measurement requirements are critically reviewed. Properly configured pulsed I-V measurements are shown to be capable of extracting such device characteristics as trap-free mobility, trap-induced threshold voltage shift (${\Delta}V_t$), as well as effective fast transient trap density. The results demonstrate that the pulsed I-V measurements are an essential technique for evaluating high-$\kappa$ gate dielectric devices.

Efficient Electron Transfer in CdSe-py-SWNTs FETs

  • Jeong, So-Hee;Shim, H.C.;Han, Chang-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.63-63
    • /
    • 2010
  • Ability to transport extracted carriers from NQDs is essential for the development of most NQD based applications. Strategies to facilitate carrier transport while preserving NQDs' optical characteristics include: 1) Fabricating neat films of NQDs with modified surfaces either by adapting series of ligands with certain limitations or by applying physical processes such as heat annealing 2) Coupling of NQDs to one-dimensional nanostructures such as single walled carbon nanotubes (SWNTs) or various types of nanowires. NQD-nanowire hybrid nanostructures are expected to facilitate selective wavelength absorption, charge transfer to 1-D nanostructures, and efficient carrier transport. Even with the vast interests in using NQD-SWNT hybrid materials in optoelectric applications, still, no reports so far have clearly elucidated the optoelectric behavior when they were assembled on the FET mainly because the complexity involving in both components in their preparation and characterization. We have monitored the optical properties of both components (NQDs, SWNTs) from the synthesis, to the assembly, and to the device. More importantly, by using pyridine molecules as a linker to non-covalently attach NQDs to SWNTs, we were able to assemble NQDs on SWNTs with precise density control without harming their electronic structures. Furthermore, by measuring electrical signals from the fabricated aligned SWNTs-FET using dielectrophoresis (DEP), we were able to elucidate the charge transfer mechanism.

  • PDF

Fabrication of anodic aluminum oxide nanotemplate using sputtered aluminum thin film (스퍼터 증착된 알루미늄 박막을 이용한 양극산화 알루미늄 나노템플레이트 제조)

  • Lee, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.923-928
    • /
    • 2010
  • Anodic aluminum oxide (AAO) nanotemplates for nano electronic device applications have been attracting increasing interest because of ease of fabrication, low cost process, and possible fabrication in large area. The size and density of the nanostructured materials can be controlled by changing the pore diameter and the pole density of AAO nanotemplate. In this paper, nano porous alumina films AAO nanotemplate was fabricated by second anodization method using sputterd Al films. In addition, effects of electrolyte temperature and anodization voltate on the microstructure of porous alumina films were investigated. As the electrolyte temperature was increased from $8^{\circ}C$ to $20^{\circ}C$, the growth rate of nanoporous alumina films was increased from 86.2 nm/min to 179.5 nm/min. The AAO nanotemplate fabricated with optimal condition had the mean pore diameter of 70 nm and the pore depth of $1\;{\mu}m$.

Quantum Hall Effect of CVD Graphene

  • Kim, Young-Soo;Park, Su-Beom;Bae, Su-Kang;Choi, Kyoung-Jun;Park, Myung-Jin;Son, Su-Yeon;Lee, Bo-Ra;Kim, Dong-Sung;Hong, Byung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.454-454
    • /
    • 2011
  • Graphene shows unusual electronic properties, such as carrier mobility as high as 10,000 $cm^2$/Vs at room temperature and quantum electronic transport, due to its electronic structure. Carrier mobility of graphene is ten times higher than that of Silicon device. On the one hand, quantum mechanical studies have continued on graphene. One of them is quantum Hall effect which is observed in graphene when high magnetic field is applied under low temperature. This is why two dimension electron gases can be formed on Graphene surface. Moreover, quantum Hall effect can be observed in room temperature under high magnetic field and shows fractional quantization values. Quantum Hall effect is important because quantized Hall resistances always have fundamental value of h/$e^2$ ~ 25,812 Ohm and it can confirm the quantum mechanical behaviors. The value of the quantized Hall resistance is extremely stable and reproducible. Therefore, it can be used for SI unit. We study to measure quantum Hall effect in CVD graphene. Graphene devices are made by using conventional E-beam lithography and RIE. We measure quantum Hall effect under high magnetic field at low temperature by using He4 gas closed loop cryostat.

  • PDF

A Numerical Study on Phonon Spectral Contributions to Thermal Conduction in Silicon-on-Insulator Transistor Using Electron-Phonon Interaction Model (전자-포논 상호작용 모델을 이용한 실리콘 박막 소자의 포논 평균자유행로 스펙트럼 열전도 기여도 수치적 연구)

  • Kang, Hyung-sun;Koh, Young Ha;Jin, Jae Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.409-414
    • /
    • 2017
  • The aim of this study is to understand the phonon transfer characteristics of a silicon thin film transistor. For this purpose, the Joule heating mechanism was considered through the electron-phonon interaction model whose validation has been done. The phonon transport characteristics were investigated in terms of phonon mean free path for the variations in the device power and silicon layer thickness from 41 nm to 177 nm. The results may be used for developing the thermal design strategy for achieving reliability and efficiency of the silicon-on-insulator (SOI) transistor, further, they will increase the understanding of heat conduction in SOI systems, which are very important in the semiconductor industry and the nano-fabrication technology.

Effects of Fully Filling Deep Electron/Hole Traps in Optically Stimulated Luminescence Dosimeters in the Kilovoltage Energy Range

  • Chun, Minsoo;Jin, Hyeongmin;Lee, Sung Young;Kwon, Ohyun;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.134-142
    • /
    • 2022
  • Background: This study investigated the characteristics of optically stimulated luminescence dosimeters (OSLDs) with fully filled deep electron/hole traps in the kV energy ranges. Materials and Methods: The experimental group consisted of InLight nanoDots, whose deep electron/hole traps were fully filled with 5 kGy pre-irradiation (OSLDexp), whereas the non-pre-irradiated OSLDs were arranged as a control group (OSLDcont). Absorbed doses for 75, 80, 85, 90, 95, 100, and 105 kVp with 200 mA and 40 ms were measured and defined as the unit doses for each energy value. A bleaching device equipped with a 520-nm long-pass filter was used, and the strong beam mode was used to read out signal counts. The characteristics were investigated in terms of fading, dose sensitivities according to the accumulated doses, and dose linearity. Results and Discussion: In OSLDexp, the average normalized counts (sensitivities) were 12.7%, 14.0%, 15.0%, 10.2%, 18.0%, 17.9%, and 17.3% higher compared with those in OSLDcont for 75, 80, 90, 95, 100, and 105 kVp, respectively. The dose accumulation and bleaching time did not significantly alter the sensitivity, regardless of the filling of deep traps for all radiation qualities. Both OSLDexp and OSLDcont exhibited good linearity, by showing coefficients determination (R2) > 0.99. The OSL sensitivities can be increased by filling of deep electron/hole traps in the energy ranges between 75 and 105 kVp, and they exhibited no significant variations according to the bleaching time.

One step facile synthesis of Au nanoparticle-cyclized polyacrylonitrile composite films and their use in organic nano-floating gate memory applications

  • Jang, Seok-Jae;Jo, Se-Bin;Jo, Hae-Na;Lee, Sang-A;Bae, Su-Gang;Lee, Sang-Hyeon;Hwang, Jun-Yeon;Jo, Han-Ik;Wang, Geon-Uk;Kim, Tae-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.2-307.2
    • /
    • 2016
  • In this study, we synthesized Au nanoparticles (AuNPs) in polyacrylonitrile (PAN) thin films using a simple annealing process in the solid phase. The synthetic conditions were systematically controlled and optimized by varying the concentration of the Au salt solution and the annealing temperature. X-ray photoelectron spectroscopy (XPS) confirmed their chemical state, and transmission electron microscopy (TEM) verified the successful synthesis, size, and density of AuNPs. Au nanoparticles were generated from the thermal decomposition of the Au salt and stabilized during the cyclization of the PAN matrix. For actual device applications, previous synthetic techniques have required the synthesis of AuNPs in a liquid phase and an additional process to form the thin film layer, such as spin-coating, dip-coating, Langmuir-Blodgett, or high vacuum deposition. In contrast, our one-step synthesis could produce gold nanoparticles from the Au salt contained in a solid matrix with an easy heat treatment. The PAN:AuNPs composite was used as the charge trap layer of an organic nano-floating gate memory (ONFGM). The memory devices exhibited a high on/off ratio (over $10^6$), large hysteresis windows (76.7 V), and a stable endurance performance (>3000 cycles), indicating that our stabilized PAN:AuNPs composite film is a potential charge trap medium for next generation organic nano-floating gate memory transistors.

  • PDF

Transparent Nano-floating Gate Memory Using Self-Assembled Bismuth Nanocrystals in $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN) Pyrochlore Thin Films

  • Jeong, Hyeon-Jun;Song, Hyeon-A;Yang, Seung-Dong;Lee, Ga-Won;Yun, Sun-Gil
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.20.1-20.1
    • /
    • 2011
  • The nano-sized quantum structure has been an attractive candidate for investigations of the fundamental physical properties and potential applications of next-generation electronic devices. Metal nano-particles form deep quantum wells between control and tunnel oxides due to a difference in work functions. The charge storage capacity of nanoparticles has led to their use in the development of nano-floating gate memory (NFGM) devices. When compared with conventional floating gate memory devices, NFGM devices offer a number of advantages that have attracted a great deal of attention: a greater inherent scalability, better endurance, a faster write/erase speed, and more processes that are compatible with conventional silicon processes. To improve the performance of NFGM, metal nanocrystals such as Au, Ag, Ni Pt, and W have been proposed due to superior density, a strong coupling with the conduction channel, a wide range of work function selectivity, and a small energy perturbation. In the present study, bismuth metal nanocrystals were self-assembled within high-k $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN) films grown at room temperature in Ar ambient via radio-frequency magnetron sputtering. The work function of the bismuth metal nanocrystals (4.34 eV) was important for nanocrystal-based nonvolatile memory (NVM) applications. If transparent NFGM devices can be integrated with transparent solar cells, non-volatile memory fields will open a new platform for flexible electron devices.

  • PDF

Scanning Kelvin Probe Microscope analysis of Nano-scale Patterning formed by Atomic Force Microscopy in Silicon Carbide (원자힘현미경을 이용한 탄화규소 미세 패터닝의 Scanning Kelvin Probe Microscopy 분석)

  • Jo, Yeong-Deuk;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.32-32
    • /
    • 2009
  • Silicon carbide (SiC) is a wide-bandgap semiconductor that has materials properties necessary for the high-power, high-frequency, high-temperature, and radiation-hard condition applications, where silicon devices cannot perform. SiC is also the only compound semiconductor material. on which a silicon oxide layer can be thermally grown, and therefore may fabrication processes used in Si-based technology can be adapted to SiC. So far, atomic force microscopy (AFM) has been extensively used to study the surface charges, dielectric constants and electrical potential distribution as well as topography in silicon-based device structures, whereas it has rarely been applied to SiC-based structures. In this work, we investigated that the local oxide growth on SiC under various conditions and demonstrated that an increased (up to ~100 nN) tip loading force (LF) on highly-doped SiC can lead a direct oxide growth (up to few tens of nm) on 4H-SiC. In addition, the surface potential and topography distributions of nano-scale patterned structures on SiC were measured at a nanometer-scale resolution using a scanning kelvin probe force microscopy (SKPM) with a non-contact mode AFM. The measured results were calibrated using a Pt-coated tip. It is assumed that the atomically resolved surface potential difference does not originate from the intrinsic work function of the materials but reflects the local electron density on the surface. It was found that the work function of the nano-scale patterned on SiC was higher than that of original SiC surface. The results confirm the concept of the work function and the barrier heights of oxide structures/SiC structures.

  • PDF

Observation of superparamagnetic behaviors in Co nano dots fabricated by laser irradiation method (레이저 조사 방법으로 제조된 Co 나노닷의 초상자성 현상 관측)

  • 양정엽;윤갑수;도영호;구자현;김채옥;홍진표
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2004.12a
    • /
    • pp.219-220
    • /
    • 2004
  • Superparamagnetic regions and magnetic anisotropic properties in randomly orientated Co nano dots(NDs) were investigated as a function of dot diameter, spacing, and density. The Co NDs were fabricated by intentionally exposing a laser source on ultra thin film. Various dot sizes are ultimately realized by changing laser power, scan condition, and intial film thickness. Magnetic hysteresis loops, angle-dependent magnetization, and temperature dependence magnetization of the Co NDs were measured with a superconducting quantum interference device. The analysis of magnetization and hysteresis loops was effectively used to determine superparamagnetic regions of the Co NDs. Up to now, the experimentally observed results repeal that room temperature superparamagnetic limit of our Co NDs was about 30 nm in diameter, with the confirmation of high resolution transmission electron microscope.

  • PDF