• 제목/요약/키워드: n-channel Poly-Si TFT

검색결과 41건 처리시간 0.029초

The characteristics of poly-silicon TFTs fabricated using ELA for AMOLED applications

  • Son, Hyuk-Joo;Kim, Jae-Hong;Jung, Sung-Wook;Lee, Jeoung-In;Jang, Kyung-Soo;Chung, Hok-Yoon;Choi, Byoung-Deog;Lee, Ki-Yong;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1281-1283
    • /
    • 2007
  • In this paper, the properties of n-channel poly-Si TFTs with different channel widths are reported. Poly-Si fabricated using ELA on glass substrates has high quality as a material for applications such as TFT-LCDs. The fabricated n-channel TFTs have a double stack structure of oxide-nitride which acts as an insulator layer. The results show that the small channel TFTs exhibited a lower $V_{TH}$ and the wide channel TFTs had a higher $I_{DSAT}$. The nchannel poly-Si TFTs with an $I_{ON}/I_{OFF}$ value of more than $10^4$ can be reliable switching devices for AMOLED displays.

  • PDF

열화가 억제된 다결정 실리콘 박막 트랜지스터의 전기적 특성 (Electrical Characteristics of Poly-Si TFT`s with Improved Degradation)

  • 변문기;이제혁;백희원;김동진;김영호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.457-460
    • /
    • 1999
  • The effects of electrical positive stress on n-channel LDD and offset structured poly-Si TFT\`s have been systematically investigated in order to analyze the transfer curve\`s shift mechanism. It has been found that the LDD and offset regions behave as a series resistance that reduce the electric field near drain. Hot carrier effects are reduced because of these results. After electrical stress transfer curve’s shift and variation of the off-current are dependent upon the offset length rather than offset region’s doping concentration. Variation of the subthreshold slope is dependent upon offset region’s doping concentration as well as offset length.

  • PDF

실리콘 이온 주입 후 고상 결정화 시킨 다결정 실리콘 TFT의 전기적 특성 (Electrical Characteristics of the Poly-Si TFT using SPC Films after Si Ion Implantation)

  • 이병주;김재영;강문상;구용서;안철
    • 전자공학회논문지A
    • /
    • 제30A권10호
    • /
    • pp.51-58
    • /
    • 1993
  • N-channel TFTs fabricated on the pre-amorphized (by Si ion implantation) and recrystallized Si film having 10.1V threshold voltage, 20.7cm$^{2}$/V$\cdot$s field effect mobility and ~10$^{5}$/ ON/OFF ratio, whowed improved characteristics comparing to those obtained from the as-deposited (by LPCVD) poly Si film which had 11.2V, 9cm$^{2}$/V$\cdot$s and ~10$^{4}$ respectively.

  • PDF

선택적으로 도핑된 채널을 가지는 새로운 다결정 실리콘 박막 트랜지스터 (NEW POLY-SI TFT'S WITH SELECTIVE DOPED REG10N IN THE CHANNEL)

  • 정상훈;이민철;전재홍;한민구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1836-1838
    • /
    • 1999
  • 다결정 실리콘 박막 트랜지스터(TFT)의 누설전류를 줄이기 위하여 채널의 중간에 선택적으로 도핑된 영역을 가진 새로운 다결정 실리콘 TFT를 제안한다. 제안된 TFT에서는 채널의 일부가 선택적으로 도핑되어 채널 전체에 걸리는 전기장이 재분배된다. 제안된 n-채널 TFT는 $V_{GS}$<0, $V_{DS}$>0인 조건에서, 대부분의 전기장이 드레인 접합에 형성되는 공핍영역과, 도핑된 영역 중 소오스 쪽과 도핑되지 않은 채널 사이에 형성되는 공핍영역에 각각 나뉘어 걸린다. 기존의 다결정 실리콘 TFT와 비교할 때 드레인 접합에서 걸리는 전기장은 1/2로 감소하였고, 이에 따라 드레인 접합에서 생성되는 전자-홀 쌍도 현저히 감소하였다. 더구나 제안된 TFT의 온-전류는 기존의 TFT와 비교했을 때 거의 같거나 약간 감소하였으며 이에 따른 온/오프 전류비가 현저히 향상되었음을 실험을 통해 확인할 수 있었다.

  • PDF

The Characterization of Poly-Si Thin Film Transistor Crystallized by a New Alignment SLS Process

  • Lee, S.J.;Yang, J.Y.;Hwang, K.S.;Yang, M.S.;Kang, I.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.16-19
    • /
    • 2007
  • In this paper, we present work that has been carried out using the SLS process to control grain boundary(GB) location in TFT channel region and it is possible to locate the GB at the same location in the channel region of each TFT. We fabricated TFT by applying a new alignment SLS process and compared the TFT characteristics with a normal SLS method and the grain boundary location controlled SLS method. Also, we have analyzed degradation phenomena under hot carrier stress conditions for n-type LDD MOSFETs.

  • PDF

Direct deposition technique for poly-SiGe thin film achieving a mobility exceeding 20 $cm^2$/Vs with ~30 nm thick bottom-gate TFTs

  • Lim, Cheol-Hyun;Hoshino, Tatsuya;Hanna, Jun-Ichi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1028-1031
    • /
    • 2009
  • High quality poly-SiGe thin films were prepared on 6-inch substrates using Reactive-thermal CVD with $Si_2H_6$ and $GeF_4$ around at $500^{\circ}C$ directly. Its thickness uniformity was ~ 3% on the entire substrate area. N-channel mobility of ~30 nm thick bottom-gate TFTs exceeded 20 $cm^2$/Vs without any further crystallization.

  • PDF

Fabrication of excimer laser annealed poly-si thin film transistor by using an elevated temperature ion shower doping

  • Park, Seung-Chul;Jeon, Duk-Young
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권11호
    • /
    • pp.22-27
    • /
    • 1998
  • We have investigated the effect of an ion shower doping of the laser annealed poly-Si films at an elevated substrate temperatures. The substrate temperature was varied from room temperature to 300$^{\circ}C$ when the poly-Si film was doped with phosphorus by a non-mass-separated ion shower. Optical, structural, and electrical characterizations have been performed in order to study the effect of the ion showering doping. The sheet resistance of the doped poly-Si films was decreased from7${\times}$106 $\Omega$/$\square$ to 700 $\Omega$/$\square$ when the substrate temperature was increased from room temperature to 300$^{\circ}C$. This low sheet resistance is due to the fact that the doped film doesn't become amorphous but remains in the polycrystalline phase. The mildly elevated substrate temperature appears to reduce ion damages incurred in poly-Si films during ion-shower doping. Using the ion-shower doping at 250$^{\circ}C$, the field effect mobility of 120 $\textrm{cm}^2$/(v$.$s) has been obtained for the n-channel poly-Si TFTs.

  • PDF

Gate Insulator 두께 가변에 따른 TFT소자의 전기적 특성 비교분석

  • 김기용;조재현;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.39-39
    • /
    • 2009
  • We fabricated p-channel TFTs based on poly Silicon. The 35nm thickness silicon dioxide layer structure got higher $I_{on}/I_{off}$ ratio, field-effect Mobility and output current than 10nm thickness. And 35nm layer showed low leakage current and threshold voltage. So, 35nm thickness silicon dioxide layer TFTs are faster reaction speed and lower power consumption than 10nm thickness.

  • PDF

저온 다결정 실리콘 박막 트랜지스터의 비정상적인 Hump 현상 분석 (Analysis of An Anomalous Hump Phenomenon in Low-temperature Poly-Si Thin Film Transistors)

  • 김유미;정광석;윤호진;양승동;이상율;이희덕;이가원
    • 한국전기전자재료학회논문지
    • /
    • 제24권11호
    • /
    • pp.900-904
    • /
    • 2011
  • In this paper, we investigated an anomalous hump phenomenon under the positive bias stress in p-type LTPS TFTs. The devices with inferior electrical performance also show larger hump phenomenon. which can be explained by the sub-channel induced from trapped electrons under thinner gate oxide region. We can confirm that the devices with larger hump have larger interface trap density ($D_{it}$) and grain boundary trap density ($N_{trap}$) extracted by low-high frequency capacitance method and Levinson-Proano method, respectively. From the C-V with I-V transfer characteristics, the trapped electrons causing hump seem to be generated particularly from the S/D and gate overlapped region. Based on these analysis, the major cause of an anomalous hump phenomenon under the positive bias stress in p-type poly-Si TFTs is explained by the GIDL occurring in the S/D and gate overlapped region and the traps existing in the channel edge region where the gate oxide becomes thinner, which can be inferred by the fact that the magnitude of the hump is dependent on the average trap densities.

Effects of Simultaneous Bending and Heating on Characteristics of Flexible Organic Thin Film Transistors

  • Cho, S.W.;Kim, D.I.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.470-470
    • /
    • 2013
  • Recently, active materials such as amorphous silicon (a-Si), poly crystalline silicon (poly-Si), transition metal oxide semiconductors (TMO), and organic semiconductors have been demonstrated for flexible electronics. In order to apply flexible devices on the polymer substrates, all layers should require the characteristic of flexibility as well as the low temperature process. Especially, pentacene thin film transistors (TFTs) have been investigated for probable use in low-cost, large-area, flexible electronic applications such as radio frequency identification (RFID) tags, smart cards, display backplane driver circuits, and sensors. Since pentacene TFTs were studied, their electrical characteristics with varying single variable such as strain, humidity, and temperature have been reported by various groups, which must preferentially be performed in the flexible electronics. For example, the channel mobility of pentacene organic TFTs mainly led to change in device performance under mechanical deformation. While some electrical characteristics like carrier mobility and concentration of organic TFTs were significantly changed at the different temperature. However, there is no study concerning multivariable. Devices actually worked in many different kinds of the environment such as thermal, light, mechanical bending, humidity and various gases. For commercialization, not fewer than two variables of mechanism analysis have to be investigated. Analyzing the phenomenon of shifted characteristics under the change of multivariable may be able to be the importance with developing improved dielectric and encapsulation layer materials. In this study, we have fabricated flexible pentacene TFTs on polymer substrates and observed electrical characteristics of pentacene TFTs exposed to tensile and compressive strains at the different values of temperature like room temperature (RT), 40, 50, $60^{\circ}C$. Effects of bending and heating on the device performance of pentacene TFT will be discussed in detail.

  • PDF