• 제목/요약/키워드: murine macrophage cell line

검색결과 134건 처리시간 0.035초

Magnolol Inhibits iNOS, p38 Kinase, and NF-κB/Rel in Murine Macrophages

  • Li Mei Hong;Chang In-Youp;Youn Ho-Jin;Jang Dae-Sik;Kim Jin-Sook;Jeon Young-Jin
    • Toxicological Research
    • /
    • 제22권3호
    • /
    • pp.293-299
    • /
    • 2006
  • We demonstrate that magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells(murine macrophage cell line). Treatment of RAW 264.7 cells with magnolol inhibited LPS-stimulated nitric oxide production in a dose-related manner. RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression. Western immunoblot analysis of phosphorylate p38 kinase showed magnolol significantly inhibited the phosphorylation of p38 kinase which is important in the regulation of iNOS gene expression. The specific p38 inhibiter SB203580 abrogated the LPS-induced NO generation and iNOS expression, whereas the selective MEK-1 inhibitor PD98059 did not affect the NO induction. Immunostaining of p65 and reporter gene assay showed that magnolol inhibited NF-${\kappa}/Rel$ nuclear translocation and transcriptional activation, respectively. Collectively, this series of experiments indicates that magnolol inhibits iNOS gene expression by blocking NF-k/Rel and p38 kinase signaling. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of magnolol or iNOS suggest that magnolol may represent a useful anti-inflammatory agent.

황약자(黃藥子) 메탄올 추출물의 염증억제 효과 (Inhibitory Effect of Dioscorea Bulbifera MeOH Extract on Pro-inflammatory Mediator In Vitro and In Vivo)

  • 정지윤;이종록;변성희;정지욱;김용한;김상찬
    • 동의생리병리학회지
    • /
    • 제24권2호
    • /
    • pp.310-318
    • /
    • 2010
  • Dioscorea bulbifera is one of the traditional medicinal herb. It commonly used in the treatment of hematemesis, epistaxis, tuberculous cervical lymphadenitis, laryngitis, acute infectious disease in East Asia. In the present study, we have demonstrated the anti-inflammatory effects of Dioscorea bulbifera MeOH extract (DBME) in macrophage cell line. To investigate mechanism of the anti-inflammatory activity, we examined the effects of the lipopolysaccaride (LPS)-induced production of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), pro-inflammatory cytokines and expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), p-inhibitory ${\kappa}B{\alpha}$ (p-$I{\kappa}B{\alpha}$), and nuclear factor-${\kappa}B$ (NF-${\kappa}B$) in a murine macrophage cell line RAW 264.7. The RAW 264.7 cells were cultured in DMEM + serum medium for 24 hrs. After serum starvation for 24 hrs, the cells were treated with DBME 0.03, 0.10, 0.30 mg/$m{\ell}$ for 1 h, followed by stimulation with LPS (1 ${\mu}g/m{\ell}$) for activation of immune response. After treatment, cell viability was measured by MTT assay, and NO production was monitored by measuring the nitrite content in culture medium. The protein band of iNOS, COX-2, p-$I{\kappa}B{\alpha}$, and NF-${\kappa}B$ was determined by immunoblot analysis and levels of cytokine were analyzed by sandwich immunoassays. There were three experimental groups: carrageenan, DBME 0.3, 1.0 g/kg. Rats were administrated either carrageenan (40% PEG) or carrageenan + DBME (0.3, 1.0 g/kg body weight) for 4 days (p.o.). To induce acute paw edema, rats were injected 1% carrageenan (100 ${\mu}{\ell}$/rat, dissolved in sterilized saline). The effect of DBME in the carrageenan-induced rat paw edema. As results, DBME has an inhibitory effect on the production of NO, PGE2, TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 and on the expression of iNOS, COX-2, p-$I{\kappa}B{\alpha}$ and translocation of NF-${\kappa}B$ to nuclear from cytosol. In addition, DBME effectively inhibited the increases of paw edema induced by carrageenan treatment in vivo. These results suggest that DBME can inhibit production of pro-inflammatory mediators and might be a useful source for treatment of acute inflammatory disease.

RAW 264.7 면역세포에서 염증유발인자의 유전자 발현에 대한 연옥수와 연옥분의 억제효과 (In Vitro Inhibition of Pro-inflammatory Mediator mRNA Expression by Nephrite in Lipopolysaccharide-induced Mouse Macrophage Cells)

  • 염미정;최보희;한동오;이혜정;심인섭;김성훈;함대현
    • 동의생리병리학회지
    • /
    • 제18권6호
    • /
    • pp.1622-1627
    • /
    • 2004
  • Nephrite has been widely used as a medicinal mineral resource to treat a numerous chronic diseases and to replenish vital essence and blood in the Korean traditional medicine. However, as of yet, there is little understanding of the pharmacological and biochemical mechanisms of its therapeutic effects as regards anti-inflammation. We therefore examined whether nephrite represses the expression of major inflammation mediators, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), in LPS-stimulated murine macrophage cell line, RAW264.7 by using RT-PCR. The powder suspension and water extracts of nephrite significantly inhibited the mRNA expression of the mediators, despite a little toxic effects on growth of RAW 264.7 cells within the concentration range tested. These experimental results suggested that the nephrite can be utilized as a functional mineral exerting the anti-inflammation medicinal effect.

강화사자발쑥의 마크로파지 RAW 264.7세포에 대한 Tumor Necrosis Factor-$\alpha$, Prostaglandin $E_2$, Cyclooxygenase-2 및 LPS 유도 Nitric Oxide 생성 저해 (Extracts of Artemisia princeps Pampanini Inhibit Lipopolysaccharide-induced Nitric Oxide, Cyclooxygenase-2, Prostaglandin $E_2$, and Tumor Necrosis Factor-$\alpha$ Production from Murine Macrophage RAW 264.7 Cells)

  • 윤준용;최세영;박표잠;정해곤;신흥묵;석경호;임병우
    • 한국약용작물학회지
    • /
    • 제16권5호
    • /
    • pp.326-331
    • /
    • 2008
  • To search for immunoactive natural products exerting anti-inflammatory activity, we have evaluated the effects on the water extracts of Artemisia princeps Pampanini (APP) on lipopolysaccharide-induced nitric oxide (NO), tumor necrosis factor-$\alpha$ (TNF-$\alpha$), and prostaglandin $E_2$ ($PGE_2$) production by RAW 264.7 macrophage cell line. Our data indicate that this extract is a potent inhibitor of NO production and it also significantly decreased PGE2 and TNF-$\alpha$ production. Consistent with these results, the protein and mRNA expression level of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was inhibited by water extracts of APP in a dose-dependent manner. These results suggest that APP may exert anti-inflammatory and analgesic effects possibly by suppressing the inducible NO synthase and COX-2 expressions.

Mechanisms Underlying Enterococcus faecalis-Induced Tumor Necrosis Factor-$\alpha$ Production in Macrophages

  • Choi, Eun-Kyoung;Kim, Dae-Eob;Oh, Won-Mann;Paek, Yun-Woong;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • 제35권2호
    • /
    • pp.43-49
    • /
    • 2010
  • Enterococcus faecalis, a gram-positive bacterium, has been implicated in endodontic infections, particularly in chronic apical periodontitis. Proinflammatory cytokines, including tumor necrosis factor-$\alpha$ (TNF-$\alpha$), are involved in the pathogenesis of these apical lesions. E. faecalis has been reported to stimulate macrophages to produce TNF-$\alpha$. The present study investigated the mechanisms involved in TNF-$\alpha$ production by a murine macrophage cell line, RAW 264.7 in response to exposure to E. faecalis. Both live and heat-killed E. faecalis induced high levels of gene expression and protein release of TNF-$\alpha$. Treatment of RAW 264.7 cells with cytochalasin D, an inhibitor of endocytosis, prevented the mRNA up-regulation of TNF-$\alpha$ by E. faecalis. In addition, antioxidant treatment reduced TNF-$\alpha$ production to baseline levels. Inhibition of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase also significantly attenuated E. faecalis-induced TNF-$\alpha$ expression by RAW 264.7 cells. Furthermore, activation of NF-${\kappa}B$ and AP-1 in RAW 264.7 cells was also stimulated by E. faecalis. These results suggest that the phagocytic uptake of bacteria is necessary for the induction of TNF-$\alpha$ in E. faecalis-stimulated macrophages, and that the underlying intracellular signaling pathways involve reactive oxygen species, ERK, p38 MAP kinase, NF-${\kappa}B$, and AP-1.

Anti-inflammatory Effect of Mangosteen (Garcinia mangostana L.) Peel Extract and its Compounds in LPS-induced RAW264.7 Cells

  • Widowati, Wahyu;Darsono, Lusiana;Suherman, Jo;Fauziah, Nurul;Maesaroh, Maesaroh;Erawijantari, Pande Putu
    • Natural Product Sciences
    • /
    • 제22권3호
    • /
    • pp.147-153
    • /
    • 2016
  • Inflammation plays an important role in host defense against external stimuli such as infection by pathogen, endotoxin or chemical exposure by the production of the inflammatory mediators that produced by macrophage. Anti-inflammatory factor is important to treat the dangers of chronic inflammation associated with chronic disease. This research aims to analyze the anti-inflammatory effects of Garcinia mangostana L. peel extract (GMPE), ${\alpha}$-mangostin, and ${\gamma}$-mangostin in LPS-induced murine macrophage cell line (RAW 264.7) by inhibiting the production of inflammatory mediators. The cytotoxic assay of G. mangostana L. extract, ${\alpha}$-mangostin, and ${\gamma}$-mangostin were performed by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) to determine the safe and non-toxic concentration in RAW 264.7 for the further assay. The concentration of inflammatory mediators (COX-2, IL-6, and IL-$1{\beta}$) were measured by the ELISA-based assay and NO by the nitrate/nitrite colorimetric assay in treated LPS-induced RAW 264.7 cells. The inhibitory activity was determined by the reducing concentration of inflammatory mediators in treated LPS-induced RAW 264.7 over the untreated cells. This research revealed that GMPE, ${\alpha}$-mangostin, and ${\gamma}$-mangostin possess the anti-inflammatory effect by reducing COX-2, IL-6, IL-$1{\beta}$, and NO production in LPS-induces RAW 264.7 cells.

Anti-inflammatory Effects of the Methanol Extract of Polytrichum Commune via NF-κB Inactivation in RAW 264.7 Macrophage Cells

  • Cho, Woong;Park, Seung-Jae;Shin, Ji-Sun;Noh, Young-Su;Cho, Eu-Jin;Nam, Jung-Hwan;Lee, Kyung-Tae
    • Biomolecules & Therapeutics
    • /
    • 제16권4호
    • /
    • pp.385-393
    • /
    • 2008
  • As an attempt to search for bioactive natural products exerting anti-inflammatory activity, we evaluated the effects of the methanol extract of Polytrichum commune Hedw (PCM) (Polytrichaceae) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines release in murine macrophage cell line RAW 264.7. PCM potently inhibits the production of NO, $PGE_2$, tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6. Consistent with these results, PCM also concentration-dependently inhibited LPS-induced inducible NO synthase (iNOS) and cyclooxygase (COX)-2 at the protein levels, and iNOS, COX-2, TNF-$\alpha$ and IL-6 at the mRNA levels without an appreciable cytotoxic effect on RAW 264.7 macrophag cells. Furthermore, PCM inhibited LPS-induced nuclear factor-kappa B (NF-$\kappa$B) activation as determined by NF-$\kappa$B reporter gene assay, and this inhibition was associated with a decrease in the nuclear translocation of p65 and p50 NF-$\kappa$B. Taken together, these results suggest that PCM may play an anti-inflammatory role in LPS-stimulated RAW 264.7 macrophages through the inhibitory regulation of iNOS, COX-2, TNF-$\alpha$ and IL-6 via NF-$\kappa$B inactivation.

The Protective Effect of Chlorophyll a Against Oxidative Stress and Inflammatory Processes in LPS-stimulated Macrophages

  • Park, Ji-Young;Park, Chung-Mu;Kim, Jin-Ju;Noh, Kyung-Hee;Cho, Chung-Won;Song, Young-Sun
    • Food Science and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.205-211
    • /
    • 2007
  • This study was designed to investigate the suppressive effect of chlorophyll a on nitric oxide (NO) production and intracellular oxidative stress. In addition, chlorophyll a regulation of nuclear factor (NF) ${\kappa}B$ activation and inducible NO synthase (iNOS) expression were explored as potential mechanisms of NO suppression in a lipopolysaccharide (LPS)-stimulated macrophage cell line. RAW 264.7 murine macrophages were preincubated with various concentrations ($0-10\;{\mu}g/ mL$) of chlorophyll a and stimulated with LPS to induce oxidative stress and inflammatory response. Treatment with chlorophyll a reduced the accumulation of thiobarbituric acid-reactive substances (TBARS), enhancing glutathione level and the activities of antioxidative enzymes including superoxide dismutase, catalase, glutathione peroxidase (GSH-px), and glutathione reductase in LPS-stimulated macrophages compared to LPS-only treated cells. NO production was significantly suppressed in a dose-dependent manner (p<0.05) with an $IC_{50}$ of $12.8\;{\mu}g/mL$. Treatment with chlorophyll a suppressed the levels of iNOS protein and its mRNA expression. The specific DNA binding activities of NFkB on nuclear extracts from chlorophyll a treated cells were significantly suppressed in a dose-dependent manner with an $IC_{50}$ of $10.7\;{\mu}g/mL$. Chlorophyll a ameliorates NO production and iNOS expression through the down-regulation of NFkB activity, which may be mediated by attenuated oxidative stress in RAW 264.7 macrophages.

황기 육계의 배합에 따른 면역활성 비교 (Comparative analysis on immune response of combination with Astragali Radix and Cinnamomi Cortex)

  • 정다영;하혜경;이호영;이남헌;신현규
    • 대한본초학회지
    • /
    • 제26권4호
    • /
    • pp.187-194
    • /
    • 2011
  • Objective : Astragali Radix (AR) and Cinnamomi Cortex (CC) are used to enhance immune response in Asian traditional medicine. Immuno-potentiation of the combination of AR and CC were evaluated on the cellular and humoral immune response using murine macrophage cell line (RAW 264.7) and OVA-immunized mice. Methods : This study was designed to investigate the immuno-potentiative effects of AR, CC, and AR with CC on nitric oxide synthesis in RAW 264.7 cells and proliferation and production levels of Intereukin-2 (IL-2) in mouse splenocytes. In addition, we evaluated the plasma-specific antibody responses and splenocyte proliferation on ovalbumin (OVA)-immunized mice treated with herbal extracts. Results : Combination treatment with AR and CC increased nitric oxide synthesis in RAW 264.7 cells and IL-2 level in splenocytes (p<0.001). Combination of AR and CC significantly enhanced the Concanavalin A- (Con A ; T cell mitogen) and lipopolysaccharide-(LPS ; B cell mitogen) induced splenocyte proliferation on the OVA-immunized mice. Combination of AR and CC also significantly enhanced plasma levels of OVA-specific IgG (p<0.01), IgG1 (p<0.05) and total IgM (p<0.01) compared with the OVA-immunized control group. Conclusion : These results suggest that combination of AR and CC could be used as therapeutic profile on activation of immune response.

Effects of Leptin on Osteoclast Generation and Activity

  • Ko, Seon-Yle;Cho, Sang-Rae;Kim, Se-Won;Kim, Jung-Keun
    • International Journal of Oral Biology
    • /
    • 제30권2호
    • /
    • pp.47-57
    • /
    • 2005
  • Leptin, the product of the obese gene, is a circulating hormone secreted primarily from adipocytes. Several results suggest that leptin is important mediators of bone metabolism. The present study was undertaken to determine the effects of leptin on anti-osteoclastogenesis using murine precursors cultured on Ca-P coated plates and on the production of osteoprotegerin (OPG) in osteoblastic cells. Additionally, this study examined the possible involvement of prostaglandin $E_2\;(PGE_2)$/protein kinase C (PKC)-mediated signals on the effect of leptin on anti-osteoclastogenesis to various culture systems of osteoclast precursors. Osteoclast generation was determined by counting tartrate-resistant acid phosphatase positive [TRAP (+)] multinucleated cells (MNCs). Osteoclastic activity was determined by measuring area of resorption pits formed by osteoclasts on Ca-P coated plate. The number of 1,25-dihydroxycholecalciferol $(1,25[OH]_2D_3)$- or $PGE_2$-induced TRAP (+) MNCs in the mouse bone marrow cell culture decreased significantly after treatment with leptin. The number of receptor activator of NF-kB ligand (RANKL)-induced TRAP (+) MNCs in M-CSF dependent bone marrow macrophage (MDBM) cell or RAW264.7 cell culture decreased significantly with leptin treatment. Indomethacin inhibited osteoclast generation induced by $1,25[OH]_2D_3$ and dexamethasone, however, no significant differences were found in the leptin treated group when compared to the corresponding indomethacin group. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, inhibited osteoclast generation induced by $1,25[OH]_2D_3$. The number of TRAP (+) MNCs decreased significantly with treatment by PMA at concentrations of 0.01 and $0.1{\mu}M$ in culture. Leptin inhibited PMA-mediated osteoclast generation. Isoquinoline-5-sulfonic 2-methyl-1-piperazide dihydrochloride (H7) had no effect on osteoclast generation induced by $1,25[OH]_2D_3$. Cell culture treatment with leptin resulted in no significant differences in osteoclast generation compared to the corresponding H7 group. Indomethacin showed no significant effect on TRAP (+) MNCs formation from the RAW264.7 cell line. PMA inhibited TRAP (+) MNCs formation induced by RANKL in the RAW264.7 cell culture. H7 had no effect on osteoclast generation from the RAW264.7 cell line. There was no difference compared with the corresponding control group after treatment with leptin. $1,25[OH]_2D_3$- or $PGE_2$-induced osteoclastic activity decreased significantly with leptin treatment at a concentration of 100 ng/ml in mouse bone marrow cell culture. Indomethacin, PMA, and H7 significantly inhibited osteoclastic activity induced by $1,25[OH]_2D_3$ in mouse bone marrow cell culture. No significant differences were found between the leptin treated group and the corresponding control group. The secretion of OPG, a substance known to inhibit osteoclast formation, was detected from the osteoblasts. Treatment by leptin resulted in significant increases in OPG secretion by osteoblastic cells. Taken these results, leptin may be an important regulatory cytokines within the bone marrow microenvironment.