Effects of Leptin on Osteoclast Generation and Activity

  • Ko, Seon-Yle (Dept. of Oral Biochemistry, Dankook University) ;
  • Cho, Sang-Rae (Dept. of Oral Biochemistry, Dankook University) ;
  • Kim, Se-Won (Dept. of Dental Pharmacology, Dankook University) ;
  • Kim, Jung-Keun (Dept. of Oral Biochemistry, Dankook University)
  • Published : 2005.06.30

Abstract

Leptin, the product of the obese gene, is a circulating hormone secreted primarily from adipocytes. Several results suggest that leptin is important mediators of bone metabolism. The present study was undertaken to determine the effects of leptin on anti-osteoclastogenesis using murine precursors cultured on Ca-P coated plates and on the production of osteoprotegerin (OPG) in osteoblastic cells. Additionally, this study examined the possible involvement of prostaglandin $E_2\;(PGE_2)$/protein kinase C (PKC)-mediated signals on the effect of leptin on anti-osteoclastogenesis to various culture systems of osteoclast precursors. Osteoclast generation was determined by counting tartrate-resistant acid phosphatase positive [TRAP (+)] multinucleated cells (MNCs). Osteoclastic activity was determined by measuring area of resorption pits formed by osteoclasts on Ca-P coated plate. The number of 1,25-dihydroxycholecalciferol $(1,25[OH]_2D_3)$- or $PGE_2$-induced TRAP (+) MNCs in the mouse bone marrow cell culture decreased significantly after treatment with leptin. The number of receptor activator of NF-kB ligand (RANKL)-induced TRAP (+) MNCs in M-CSF dependent bone marrow macrophage (MDBM) cell or RAW264.7 cell culture decreased significantly with leptin treatment. Indomethacin inhibited osteoclast generation induced by $1,25[OH]_2D_3$ and dexamethasone, however, no significant differences were found in the leptin treated group when compared to the corresponding indomethacin group. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, inhibited osteoclast generation induced by $1,25[OH]_2D_3$. The number of TRAP (+) MNCs decreased significantly with treatment by PMA at concentrations of 0.01 and $0.1{\mu}M$ in culture. Leptin inhibited PMA-mediated osteoclast generation. Isoquinoline-5-sulfonic 2-methyl-1-piperazide dihydrochloride (H7) had no effect on osteoclast generation induced by $1,25[OH]_2D_3$. Cell culture treatment with leptin resulted in no significant differences in osteoclast generation compared to the corresponding H7 group. Indomethacin showed no significant effect on TRAP (+) MNCs formation from the RAW264.7 cell line. PMA inhibited TRAP (+) MNCs formation induced by RANKL in the RAW264.7 cell culture. H7 had no effect on osteoclast generation from the RAW264.7 cell line. There was no difference compared with the corresponding control group after treatment with leptin. $1,25[OH]_2D_3$- or $PGE_2$-induced osteoclastic activity decreased significantly with leptin treatment at a concentration of 100 ng/ml in mouse bone marrow cell culture. Indomethacin, PMA, and H7 significantly inhibited osteoclastic activity induced by $1,25[OH]_2D_3$ in mouse bone marrow cell culture. No significant differences were found between the leptin treated group and the corresponding control group. The secretion of OPG, a substance known to inhibit osteoclast formation, was detected from the osteoblasts. Treatment by leptin resulted in significant increases in OPG secretion by osteoblastic cells. Taken these results, leptin may be an important regulatory cytokines within the bone marrow microenvironment.

Keywords

References

  1. Albala, C., Yanez, M., Devoto, E., Sostin, C., Zeballos, L. and Santos, J.L.: Obesity as a protective factor for postmenopausal osteoporosis. Int. J.Obes. Relat. Metab. Cisord. 20:1027-1032, 1996
  2. Andersori, D.M., Maraskovsky, E., Billingsley, W.L., Dougall, W.C., Tometsko, M.E., Roux, E.R., Teepe, M.C., DuBose, R.F., Cosman, D. and Galibert, L.: A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175-179, 1997 https://doi.org/10.1038/36593
  3. Anselme, K., Noel, B., Limosino, D., Bianchi, F., Morin, C. and Hardouin, P.: Comparative study of the in vitro characteristics of osteoblasts from paralytic and nonparalytic children. Spinal Cord 38:622-629, 2000 https://doi.org/10.1038/sj.sc.3101065
  4. Bado, A., Levasseur, S., Attoub, S., Kermorgant, S., Laigneau, J.P. Bortoluzzi, M.N., Moizo, L., Lehy, T., Guerre-Millo, M., LeMarchand-Brustel, Y. and Lewin, M.J.: The stomach is a source of leptin. Nature 394:790-793, 1998 https://doi.org/10.1038/29547
  5. Barash, I.A., Cheung, C.C., Weigle, D.S., Kabigting, E.B., Kuijper, J.L., Clifton, D.K. and Steiner, R.A.: Leptin is a metabolic signal to the reproductive system. Endocrinology 137:3144-3147, 1996 https://doi.org/10.1210/en.137.7.3144
  6. Begg, S.K., Radley, J.M., Pollard, J.W., Chisholm, O.T., Stanley, E.R. and Bertoncello, I.: Delayed hematopoietic development in osteopetrotic (op/op) mice. J. Exp. Med. 177:237-242, 1993 https://doi.org/10.1084/jem.177.1.237
  7. Burgess, T.L., Qian, Y., Kaufman, S., Ring, B.D., Van, G., Capparelli, C., Kelley, M., Hsu, H., Boyle, W.J., Dunstan, C.R., Hu, S. and Lacey, D.L.: The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145:527-538, 1999 https://doi.org/10.1083/jcb.145.3.527
  8. Chambers, T.: Regulation of osteoclast development and function. In Rifkin B., Gay, C. edited. Biology and Physiology of the osteoclast. CRC Press, Boca Raton, FL, USA pp 105-128, 1992
  9. Cohen, B., Novick, D. and Rubinstein, M.: Modulation of insulin activities by leptin. Science 274:1185-1188, 1996 https://doi.org/10.1126/science.274.5290.1185
  10. Collins, S., Kuhn, C.M., Petro, A.E., Swick, A.G., Chrunyk, B.A. and Surwit, R.S.: Role of leptin in fat regulation. Nature 380:677. 1996 https://doi.org/10.1038/380677a0
  11. Considine, R.V. and Caro, J.F.: Pleiotropic cellular effects of leptin. Curr. Opin. Endocrinol. Diabetes 6:163-169, 1999 https://doi.org/10.1097/00060793-199904000-00013
  12. Considine, R.V., Sinha, M.K., Heiman, M.L., Kriauciunas, A., Stephens, T.W., Nyce, M.R., Ohannesian, J.P., Macrco, C.C., McKee, L.J., Bauer, T.L. and Caro, J.F.: Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334:292-295, 1996 https://doi.org/10.1056/NEJM199602013340503
  13. Cornish, J., Callon, K.E., Bava, U., Lin, C., Naot, D., Hill, B.L., Grey, A.B., Broom, N., Myers, D.E., Nicholson, G.C. and Reid, I.R.: Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J. Endocrinol. 175:405-415, 2002 https://doi.org/10.1677/joe.0.1750405
  14. Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A.F., Beil, F.T., Shen, J., Vinson, C., Rueger, J.M. and Karsenty, G.: Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197-207, 2000 https://doi.org/10.1016/S0092-8674(00)81558-5
  15. Eastel, R.: Pathogenesis of postmenopausal osteoporosis. In Favus, M.J. edited. Primer on the metabolic bone diseases and disorders of mineral metabolism, 4th ed. Philadelpia, PA : Lippincott Wiliams and Wilkins, pp 260-262, 1999
  16. Felson, D.T., Zhang, Y., Hannan, M.T. and Anderson, J.J.: Effects of weight and body mass index on bone mineral density in men and women: The Framinhgam study. J. Bone Miner. Res. 8:567-573, 1993
  17. Fleet, J.C.: Leptin and bone: does the brain control bone biology? Nutrition Rev. 58:209-211, 2000 https://doi.org/10.1111/j.1753-4887.2000.tb01864.x
  18. Frost, H.M.: Metabolism of bone. N. Engl. J. Med. 289:864-865, 1973
  19. Gainsford, T., Willson, T.A., Metcalf, D., Handman, E., McFarlane, C., Ng, A., Nicola, N.A., Alexander, W.S. and Hilton, D.J.: Leptin can induce proliferation, differentiaion, and functional activation of hemopoietic cells. Proc. Natl. Acad. Sci. 93:14564-14568, 1996 https://doi.org/10.1073/pnas.93.25.14564
  20. Gordeladze, J.O., Drevon, C.A., Syversen, U. and Reseland, J.E.: Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J. Cell. Biochem. 85:825-836, 2002 https://doi.org/10.1002/jcb.10156
  21. Holloway, W.R., Collier, F.M., Aitken, C.J., Myers, D.E., Hodge, J.M., Malakellis, M., Gough, T.J., Collier, G.R. and Nicholson, G.C.: Leptin inhibits osteoclast generation. J. Bone Miner. Res. 17:200-209, 2002 https://doi.org/10.1359/jbmr.2002.17.2.200
  22. Hoover, P.A., Webber, C.E., Beaumont, .L.F. and Blake, J.M.: Postmenopausal bone mineral density: relationship to calcium intake, calcium absorption, residual estrogen, body composition, and physical activity. Can. J. Physiol. Pharmacol. 74:911-917, 1996 https://doi.org/10.1139/cjpp-74-8-911
  23. Hsu, H., Lacey, D.L., Dunstan, C.R., Solovyev, I., Colombero, A., Timms, E., Tan, H.L., Elliott, G., Kelley, M.J., Sarosi, I., Wang, L., Xia, X.L., Elliott, R., Chiu, L., Black, T., Scully, S., Capparelli, C., Morony, S., Shimamoto, G., Bass, M.B. and Boyle, W.J.: Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA 96:3540-3545, 1999 https://doi.org/10.1073/pnas.96.7.3540
  24. Huang, L. and Cai, L.: Leptin: a multifunctional hormone. Cell Research 10: 81-92, 2000 https://doi.org/10.1038/sj.cr.7290038
  25. Iwaniec, U.T., Baumann, G., Heinzmann, U. and Atkinson, M.J.: Loss of the differentiated phenotype precedes apoptosis of ROS 17/2.8 osteoblast-like cells. Calcif. Tissue Int. 63: 208-213, 1998 https://doi.org/10.1007/s002239900516
  26. Klein, K.O., Larmore, K.A., de Lancey, E., Brown, J.M., Considine, R.V. and Hassink, S.G: Effect of obesity on estradiol level, and its relationship to leptin, bone maturation, and bone mineral density in children. J. Clin. Endocrinol. Metab. 83:3469-3475, 1998 https://doi.org/10.1210/jc.83.10.3469
  27. Klein, S., Coppack, S.W., Mohamed-Ali, V. and Landt, M.: Adipose tissue leptin production and plasma leptin kinetics in humans. Diabetes 45:984-987, 1996 https://doi.org/10.2337/diabetes.45.7.984
  28. Kodama, H., Yamasaki, A., Nose, M., Niida, S., Ohgame, Y, Abe, M., Kumegawa, M. and Suda, T.: Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J. Exp. Med.173:269-272, 1991 https://doi.org/10.1084/jem.173.1.269
  29. Kondo, H., Guo, J. and Bringhurst, F.R.: Cyclic adenosine monophosphate/protein kinase A mediates parathyroid hormone/parathyroid hormone-related protein receptor regulation of osteoclastogenesis and expression of RANKL and osteoprotegerin mRNAs by marrow stromal cells. J. Bone Miner. Res. 17:1667-1679, 2002 https://doi.org/10.1359/jbmr.2002.17.9.1667
  30. Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A.J., Van, G., Itie, A., Khoo, W., Wakeham, A., Dunstan, C.R., Lacey, D.L., Mak, T.W., Boyle, W.J. and Penninger, J.M.: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397: 315-323, 1999b https://doi.org/10.1038/16852
  31. Laharrague, P., Larrouy, D., Fontanilles, A.M., Truel, N., Campfield, A, Tenenbaum, R., Galitzky, J., Corberand, J.X., Penicaud, L. and Casteilla, L.: High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J. 12:747-752, 1998
  32. Lengauer, C., Kinzler, K.W. and Vogelstein, B.: Genetic instabilities in human cancers. Nature 396:643-649, 1998 https://doi.org/10.1038/25292
  33. Liu, B.Y., Guo, J., Lanske, B., Divieti, P., Kronenberg, H.M. and Bringhurst, F.R.: Conditionally immortalized murine bone marrow stromal cells mediate parathyroid hormonedependent osteoclastogenesis in vitro. Endocrinology 139: 1952-1964, 1998 https://doi.org/10.1210/en.139.4.1952
  34. Liu, C., Grossmann, A., Bain, S., Srachan, M., Puemer, D., Bailey, C., Humes, J., Lenox, J., Yamamoto, G., Sprugel, K., Kuijper, J., Weigle, S., Dunam, D. and Moore, E.: Leptin stimulates cortical bone formation in obese (ob/ob) mice. Annual Meeting of the ASBMR (abstract) S211 :50, 1997 https://doi.org/10.1016/S1297-319X(02)00005-2
  35. Lord, G.M., Matarese, G., Howard, J.K., Baker, R.J., Bloom, S.R. and Lechler, R.I.: Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394:897-901, 1998 https://doi.org/10.1038/29795
  36. Maor, G., Rochwerger, M., Segev, Y. and Phillip, M.: Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J. Bone Miner. Res. 17:1034-1043, 2002 https://doi.org/10.1359/jbmr.2002.17.6.1034
  37. Matkovic, V., Ilich, J.Z., Badenhop, N.E., Skugor, M., Clairmont, A., Klisovic, D. and Landoll, J.D.: Gain in body fat is inversely related to the nocturnal rise in serum leptin level in young females. J. Clin. Endocrinol. Metab. 82: 1368-1372, 1997 https://doi.org/10.1210/jc.82.5.1368
  38. Minkin, C.: Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif. Tissue Int. 34:285-290, 1982 https://doi.org/10.1007/BF02411252
  39. Moonga, B.S. and Dempster, D.W.: Effects of peptide fragments of protein kinase C on isolated rat osteoclasts. Exp. Physiol. 83:717-725, 1998 https://doi.org/10.1113/expphysiol.1998.sp004153
  40. Mundy, G.R. and Roodman, G.D.: Osteoclast ontogeny and function, In Bone and Mineral Research, vol. 5, edited by Peck, W.A., pp 209-279, Elsevier, Amsterdam, 1987
  41. Nijweide, P.J., Burger, E.H. and Feyen, J.H.M.: Cells of bone: Proliferation, differentiation, and hormonal regulation. Physiol. Rev. 66:855-886, 1986
  42. Ogueh, O., Sooranna, S., Nicolaides, K.H. and Johnson, M.R.: The relationship between leptin concentration and bone metabolism in the human fetus. J. Clin. Endocrinol. Metab. 85:1997-1999, 2000 https://doi.org/10.1210/jc.85.5.1997
  43. Pasco, J.A., Henry, M.J., Kotowicz, M.A., Collier, G.R., Ball, M.J., Ugoni, A.M. and Nicholson, G.C.: Serum leptin levels are associated with bone mass in nonobese women. J. Clin. Endocrinol. Metab. 86:1884-1887, 2001 https://doi.org/10.1210/jc.86.5.1884
  44. Ranganathan, S., Ciaraldi, T.P., Henry, R.R., Mudaliar, S. and Kern, P.A.: Lack of effect of leptin on glucose transport, lipoprotein lipase, and insulin action in adipose and muscle cells. Endocrinology 139:2509-2513, 1998 https://doi.org/10.1210/en.139.5.2509
  45. Ravn, P., Cizza, G., Bjarnason, N.H., Thompson, D., Daley, M., Wasnich, R.D., McClung, M., Hosking, D., Yates, A.J. and Christiansen, C.: Low Body Mass Index Is an Important Risk Factor for Low Bone Mass and Increased Bone Loss in Early Postmenopausal Women. J. Bone Miner. Res. 14: 1622-1627, 1999 https://doi.org/10.1359/jbmr.1999.14.9.1622
  46. Reid, I.R., Ames, R., Evans, M.C., Sharpe, S., Gamble, G., France, J.T., Lim, T.M. and Cundy, T.F.: Determinants of total body and regional bone' mineral density in normal postmenopausal women-a key role for fat mass. J. Clin. Endocrinol. Metob. 75:45-51, 1992 https://doi.org/10.1210/jc.75.1.45
  47. Ribot, C., Tremollieres, F. and Pouilles, J.M.: The effect of obesity on postmenopausal bone loss and the risk of osteoporosis. Adv. Natr. Res. 9:257-271, 1994
  48. Roodman, G.D.: Cell biology of the osteoclast. Exp. Hematol. 27: 1299-1241, 1999 https://doi.org/10.1016/S0301-472X(99)00061-2
  49. Santos-Alvarez, J., Goberna, R. and Sancez-Margalet, V.: Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol. 194: 6-11, 1999 https://doi.org/10.1006/cimm.1999.1490
  50. Shimabukuro, M., Koyama, K., Chen, G., Wang, M.Y., Trieu, F., Lee, Y., Newgard, C.B. and Unger, R.H.: Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc. Natl. Aacd. Sci. 94:4637-4641, 1997 https://doi.org/10.1073/pnas.94.9.4637
  51. Sierra-Honigmann, M.R., Nath, A.K., Murakami, C., GarciaCardena, G., Papapetropoulos, A., Sessa, W.C., Madge, L.A., Schechner, J.S., Schwabb, M.B., Polverini, P.J. and Flores-Riveros, J.R.: Biological action of leptin as an angiogenic factor. Science 281: 1683-1686, 1998 https://doi.org/10.1126/science.281.5383.1683
  52. Solin, M.S., Ball, M.J., Robertson, I. De Silva, A., Pasco, J., Kotowicz, M.A., Nicholson, G.C. and Collier, G.R.: Relationship of serum leptin to total and truncal body fat. Clin. Sci. 93:581-584, 1997 https://doi.org/10.1042/cs0930581
  53. Stein, G.S., Lian, J.B., Stein, J.L., Van Wijnen, A.J. and Montecino, M.: Transcriptional control of osteoblast growth and differentiation. Physiol. Rev. 76: 593-629, 1996
  54. Steppan, C.M. and Swick, A.G.: A role for leptin in brain development. Biophy. Biochem. Res. Commun. 256:600-602, 1999 https://doi.org/10.1006/bbrc.1999.0382
  55. Steppan, C.M., Crawford, D.T., Chidsey-Frink, K.L., Ke, H. and Swick, A.G.: Leptin is a potent stimulator of bone growth in ob/ob mice. Regul. Pept. 92:73-78, 2000 https://doi.org/10.1016/S0167-0115(00)00152-X
  56. Suda, T., Takahashi, N. and Martin, T.J.: Modulation of osteoclast differentiation. Endocrine Rev. 13:66-80, 1992 https://doi.org/10.1210/edrv-13-1-66
  57. Suda, T., Takahashi, N., Udagawa, N., limi, E., Gillespie, M.T. and Martin, T.J.: Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrine Rev. 20:345-57, 1999 https://doi.org/10.1210/er.20.3.345
  58. Takahashi, N., Udagawa, N. and Suda, T.: A new member of tumor necrosis factor ligand family, RANKL/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256:449-455, 1999 https://doi.org/10.1006/bbrc.1999.0252
  59. Takekoshi, K., Ishii, K., Nanmoku, T., Shibuya, S., Kawakami, Y., Isobe, K. and Nakai T.: Leptin stimulates catecholamine synthesis in a PKC-dependent manner in cultured porcine adrenal medullary chromaffin cells. Endocrinology 142:4861-4871, 2001 https://doi.org/10.1210/en.142.11.4861
  60. Tartaglia, L.A.: The leptin receptor. J. Biol. Chem. 272.:6093-6096, 1997 https://doi.org/10.1074/jbc.272.10.6093
  61. Thomas, T., Gori, F., Khosla, S., Jensen, M.D., Burguera, B. and Riggs, B.L.: Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140: 1630-1638, 1999 https://doi.org/10.1210/en.140.4.1630
  62. Udagawa, N., Takahashi, N., Yasuda, H., Mizuno, A., Itoh, K., Ueno, Y., Shinki, T., Gillespie, M.T., Martin, T.J., Higashio, K. and Suda, T.: Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141:3478-3484, 2000 https://doi.org/10.1210/en.141.9.3478
  63. Wong, B.R., Rho, J., Arron, J., Robinson, E., Orlinick, J., Chao, M., Kalachilov, S., Cayani, E., Bartlett, III, F.S., Frankel, W.N., Lee, S.Y. and Choi, Y.: TRANCE is a novel ligand of the tumor necrosis factor receptor family that activated c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272:25190-25194, 1997 https://doi.org/10.1074/jbc.272.40.25190
  64. Yamauchi, M., Sugimoto, T., Yamaguchi, T., Nakaoka, D., Kanzawa, M., Yano, S., Ozuru, R., Sugishita, T. and Chihara, K.: Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin. Endocrinol. 55:341-347, 2001 https://doi.org/10.1046/j.1365-2265.2001.01361.x
  65. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N. and Suda, T.: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclasto-genesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95:3597-3602, 1998 https://doi.org/10.1073/pnas.95.7.3597