• 제목/요약/키워드: multivariable process

Search Result 62, Processing Time 0.03 seconds

On the Application af Robust Multivariable Controller to Distillation Column (증류탑 제어에 있어서 로바스트 다변수 제어 응용에 관한 연구)

  • 고재욱;이원규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.238-243
    • /
    • 1986
  • Distillation columns are widely used in almost every chemical plant. The use of multivariable control for such units is attractive because of the strong interactions exhibited between outputs and inputs and the desire to control simultaneously both top and bottom products. In this research design of a robust multivariable controller for distillation column was considered; output feedback controller with proportional and integral modes was designed using pole assignment. The transfer function matrix was obtained by fitting the step response realtions between single input double output pairs of variables. This matrix was then converted to linear time invariant state space model by multivariable realization technique. With the proposed multivariable proportional and integral controller applied to the process, the result of the digital computer simulation showed a good performance of asymtotic tracking. The limited experimental performance of this multivariable control was compared with the result from simulation. It was found that the proposed controller performed satisfactorily for the distillation column which separated binary mixture of methanol and water.

  • PDF

A multivariable decoupling self-tuning controller for systems with time delays (시간 지연을 갖는 다변수 계통에 대한 비결합 자기동조 제어기)

  • 김유택;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.190-192
    • /
    • 1987
  • In the paper an multivariable decoupling self-tuning algorithm is proposed for controller design, by specifying the closed-loop behaviour of the system in the form of a reference model, so that the controller parameters can be estimated on-line as the process development. The effectiveness of this algorithm in controlling multivariable systems is demonstrated by simulation example in spite of the usual implementation problems of self-tuning controllers.

  • PDF

A study on the multivariable control system tuning (다변수 제어 시스템의 동조에 관한 연구)

  • 주용진;서병설;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.456-458
    • /
    • 1986
  • A method for on-line tuning of the PID-controller parameters for a discrete-time multivariable process system is presented. And it is based on a step change in the controller set point. The system is presumed to be a linear, open loop stable and known one. The controller parameters are determined by the performance criterion and Fletcher-Powell methods.

  • PDF

Analytical Design of Multiloop PI Controller for Disturbance Rejection in Multivariable Processes (다변수 공정에서의 외란제거를 위한 다중루프 PI 제어기의 해석적 설계)

  • Vu Truong Nguyen Luan;Lee Ji-Tae;Lee Moon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.505-508
    • /
    • 2006
  • This paper presents a new analytical approach for designing multiloop PI controllers for disturbance rejection in multivariable processes with time delay. The proposed method is based on IMC-PID design approach. To overcome a sluggish load response by dominant pole in the process, the IMC filter is modified to compensate the dominant pole effect. Based on the modified IMC filter, an analytical tuning rule for multiloop PI controller is driven by extending the generalized IMC-PID method for single input/single output (SISO) systems [1] to multi input/multi output (MIMO) systems. Simulation results show that the proposed method gives a satisfactory load performance as well as servo performance in the multiloop system.

Design of Multivariable PID Controllers: A Comparative Study

  • Memon, Shabeena;Kalhoro, Arbab Nighat
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.212-218
    • /
    • 2021
  • The Proportional Integral Derivative (PID) controller is the most popular industrial controller and more than 90% process industries use this controller. During the past 50 years, numerous good tuning methods have been proposed for Single Input Single Output Systems. However, design of PI/PID controllers for multivariable processes is a challenge for the researchers. A comparative study of three PID controllers design methods has been carried-out. These methods include the DS (Direct Synthesis) method, IMC (Internal model Control) method and ETF (Effective Transfer Function) method. MIMO PID controllers are designed for a number of 2×2, 3×3 and 4×4 process models with multiple delays. The performance of the three methods has been evaluated through simulation studies in Matlab/Simulink environment. After extensive simulation studies, it is found that the Effective Transfer Function (ETF) Method produces better output responses among two methods. In this work, only decentralized methods of PID controllers have been studied and investigated.

Design of Multivariable PID Controllers: A Comparative Study

  • Memon, Shabeena;Kalhoro, Arbab Nighat
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.11-18
    • /
    • 2021
  • The Proportional Integral Derivative (PID) controller is the most popular industrial controller and more than 90% process industries use this controller. During the past 50 years, numerous good tuning methods have been proposed for Single Input Single Output Systems. However, design of PI/PID controllers for multivariable processes is a challenge for the researchers. A comparative study of three PID controllers design methods has been carried-out. These methods include the DS (Direct Synthesis) method, IMC (Internal model Control) method and ETF (Effective Transfer Function) method. MIMO PID controllers are designed for a number of 2×2, 3×3 and 4×4 process models with multiple delays. The performance of the three methods has been evaluated through simulation studies in Matlab/Simulink environment. After extensive simulation studies, it is found that the Effective Transfer Function (ETF) Method produces better output responses among two methods. In this work, only decentralized methods of PID controllers have been studied and investigated.

Intelligent Control of Multivariable Process Using Immune Network System

  • Kim, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2126-2128
    • /
    • 2001
  • This paper suggests that the immune network algorithm based on fuzzy set can effectively be used in tuning of a PID controller for multivariable process or nonlinear process. The artificial immune network always has a new parallel decentralized processing mechanism for various situations, since antibodies communicate to each other among different species of antibodies/B-cells through the stimulation and suppression chains among antibodies that from a large-scaled network. In addition to that, the structure of the network is not fixed, but varies continuously. On the other hand, a number of tuning technologies have been considered for the tuning of a PID controller. As a less common method, the fuzzy and neural network or its combined techniques are applied. However, in the case of the latter, yet, it is not applied in the practical field, in the former, a higher experience and technology is required during tuning procedure. Along with these, this paper used the fuzzy set in order that the stimulation and suppression relationship between antibody and antigen can be more adaptable controlled against the external condition, including noise or disturbance of plant. The immune network based on fuzzy set suggested here is applied for the PID controller tuning of multivariable process with two inputs and one output and is simulated.

  • PDF

Experimental Examination of Multivariable PID Controller Design on Frequency Domain using Liquid Level Process

  • Eguchi, Kazuki;Iwai, Zenta;Mizumoto, Ikuro;Kumon, Makoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.786-791
    • /
    • 2005
  • This paper is concerned with the examination and evaluation concerning a tuning method of multivariable PID controllers based on partial model matching on frequency domain proposed by authors from practical view point. In this case, PID controller parameters are determined by minimizing the loss function defined by the difference between frequency response of ideal model transfer function and actual frequency response on several frequency points. The purpose of the paper is to examine and evaluate the performance of the method through actual experiments of MIMO liquid level experimental process control equipment.

  • PDF

A study on automatic adjustment of white-balance for color television by using the fuzzy logic (애매논리를 이용한 칼라 텔레비전의 백색균형 자동조정에 관한 연구)

  • Chae, Seog;Oh, Young-Suk;Lee, Sang-Yun;Lee, Ji-Hong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.20-27
    • /
    • 1993
  • The white-balance system for color tevision is characterized by 5 input-5 output nonlinear process. A design strategy of fuzzy control rules is treated in which it can be adopted to the white balance adjustment for color television. A fuzzy rule based on an expert's knowledge is constructed, and then a multivariable fuzzy control rule is designed. Since human has just two hands, he can manipulate two variables simutaneously. In case when the process to be controlled has more than three control variables, expert's control rule is much different from the multivariable control rule. A multivariable fuzzy control rule is constructed by utilizing the expert' knowledge and rough relations between input and output variables, and its usefulness is shown by experiments.

  • PDF

Design of multivariable self tuning PID controllers (다변수 자기동조 PID 제어기의 설계)

  • 조원철;전기준
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.66-77
    • /
    • 1997
  • This paper presents an automatic tuning method for parameters of a multivaiable self-tuning velocity-type PID controller which adapts to changes in the system parameters with time delays and noises. The velocity-type PID control structure is determined in the process of minimizing the variance of the auxiliarly output, and self-tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optiminzing the design parameters of the controller. The proposed PID type multivariable self-tuning method is simple andeffective compared with other esisting multivariable self-tuning methods. Computer simulation has shown that the proposed algorithm is beter than the trial-and-error method in the tracking performance.

  • PDF