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Abstract: This paper is concerned with the examination and evaluation concerning a tuning method of multivariable PID

controllers based on partial model matching on frequency domain proposed by authors from practical view point. In this case,

PID controller parameters are determined by minimizing the loss function defined by the difference between frequency response

of ideal model transfer function and actual frequency response on several frequency points. The purpose of the paper is to

examine and evaluate the performance of the method through actual experiments of MIMO liquid level experimental process

control equipment.
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1. Introduction

PID control has occupied the position of the most utiliz-

ing technique in process control through over sixty years be-

cause of its simplicity and robustness. In SISO case, we al-

ready have had several well-known PID controller parameter

tuning methods which include, for example, Ziegler-Nichols

method and so on [1]. On the contrary, we have a few meth-

ods on the tuning of MIMO PID controllers through most

systems are considered as MIMO systems actually[2], [3], [4].

Recently, authors have proposed a method to tune MIMO

PID controllers based on partial model matching on fre-

quency domain. The special feature of the method is that

it requires only several frequency response of the plant at

several frequency points to tune PID controller parameters.

That is, it is not necessary to know exact numerical model of

the actual plant to tune PID controllers. Thus it can easily

be applied to MIMO case. This method was first developed

by authors as a tool of SISO PID controller parameter tun-

ing[5]. The method was modified and applied to MIMO PID

controller parameters tuning[6], [7], [8]. The effectiveness of

the method was confirmed by applying it to several mechan-

ical systems. For example, we have used it to the design of

active vibration control system and obtained a good result.

However, as to the application of the method to the pro-

cess control, examination of its effectiveness was made only

through numerical simulation. One of the difficulties con-

cerning practical application of the method arises from the

difficulty of obtaining the frequency response or spectrum

of the process. To avoid such a problem, in this report, we

proposed to use step response of the plant because step re-

sponse is generally easy to obtain in process system. Here

we use the so-called Prony’s method to obtain transfer func-

tion from the step response of the plant. As a result we can

easily obtain frequency response at any desired frequency

points of the plant. The effectiveness of the proposed design

procedure is examined and evaluated through an experimen-

tal tests using 2-inputs/2-outputs experimental liquid level

equipment.

This paper is organized as follows. In Section 2, we derive

the control sytem design problem to be treated here briefly.

The MIMO PID parameter tuning method based on partial

model matching on frequency domain is explained in Section

3. Evaluation of the method using 2-inputs/2-outputs liquid

level process is shown in Section 4 with several experimental

results.

2. Problem setup
Let us consider the following m-inputs/m-outputs plant

shown in Fig.1.

C(s) G(s)
uM(t) u(t) y(t)

+
�

Fig. 1. Block diagram of control system.

In Fig.1, m × m transfer function matrices G(s) and C(s)

denote the plant transfer function matrix and PID controller

matrix, respectively. Their elements are defined as follows:

G(s) = [gij(s)]i,j=1,···,m , (1)

C(s) = [cij(s)]i,j=1,···,m

=

[
kPij +

kIij

s
+

kDij s

1 + γis

]
. (2)

uM (t) = [uMi(t)]i=1,···,m is a reference input vector,

u(t) = [ui(t)]i=1,···,m is a control input vector and y(t) =

[yi(t)]i=1,···,m is an output vector of the system, respectively.

Note that the parameter γi in Eq.(2) is introduced for prac-

tical realizability of the differential term.

From Fig.1 we can obtain the open-loop transfer function

matrix of the control system as follows:

Q(s) = G(s)C(s) = [qij(s)]i,j=1,···,m

=

[
m∑

p=1

gip(s)cpj(s)

]

i,j=1,···,m

. (3)
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Further we consider the following reference control system

shown in Fig.2 whereGM (s) is the desired open-loop transfer

function matrix.

GM(s)
uM(t)

+
�

yM(t)

Fig. 2. Block diagram of Reference system

For the simplicity, we give GM (s) in the following diagonal

form.

GM (s) = diag[gMi(s)]i=1,···,m . (4)

The desired closed-loop transfer function matrix is given as

follows:

GMcl(s) = (Im +GM (s))−1GM (s)

= diag

[
gMi(s)

1 + gMi(s)

]

i=1,···,m
. (5)

Obviously, it is impossible to realize exact model matching

between Q(s) and GMcl(s) because of the limitation con-

cerning the PID controller matrix C(s).

3. Parameter tuning policy of MIMO PID
controller

In this section, we will show the tuning policy of MIMO

PID controller parameters based on partial model matching

method with stability constraints[7], [8].

3.1. Loss function

Consider the model matching between GM (jω) and Q(jω)

on some frequency set

Ω = [Ω1, · · · ,Ωm] . (6)

where Ωi is defined as follows:

Ωi =
[
ωi1 , · · · , ωiNi

]
, i = 1, · · · , m . (7)

To evaluate the difference of frequency responce between ref-

erence model and control system on Ωi, we introduce the

following error functions:

εii(jωik ) =
gMi(jωik )−∑m

p=1
gip(jωik )cpi(jωik )

gMi(jωik )
, (8)

εqi(jωik ) =

∑m

p=1
gqp(jωik )cpi(jωik )

gMq (jωik )
, (9)

ωik ∈ Ωi, i, q = 1, · · · , m, q 6= i .

Then we can define the loss function as follows:

Ji(�i) =

Ni∑
k=1

|εii(jωik )|2 +

Ni∑
k=1

|εii(−jωik )|2

+

m∑
q=1
q 6=i

(
Ni∑

k=1

|εqi(jωik )|2 +

Ni∑
k=1

|εqi(−jωik )|2
)

,

ωik ∈ Ωi, i = 1, · · · , m . (10)

The PID parameter vector �i

�i = [kPi1 , kIi1 , kDi1 , · · · , kPim , kIim , kDim ]Ti=1,···,m (11)

is included in Eq.(10). Then the problem is to find an op-

timal PID parameters �i, i = 1, · · · , m, which minimize the

loss function Eq.(10). In Eq.(10), Ji(�i) is derived as a sum

of square and its conjugate form. The mean of adding the

complex conjugate term is to obtain �i as a real parameter

value when we apply the least squares to the minimization

problem of Eq.(10) [9].

3.2. Stability conditions

As stated in 3.1, the PID parameters �i which minimize loss

function on Ωi can be obtained as the least squares solution

of Eq.(10). However, thus obtained solution does not guaran-

tee the stability of the actual closed-loop system. To improve

the situation, a numerical method of solving Eq.(10) with

some stability constraints are proposed[8] based on Rosen-

block’s stability theorem[10].

To realize the above stated objective, we consider the follow-

ing 2 sufficient conditions for the stability of the system:

Condition 1

Nyquist plot of diagonal elements qii(s), i = 1, · · · , m ofQ(s)

always looks at (−1, j0) on its left hand side on ω ∈ [0,∞).

Condition 2

The i-th row or column Gershgorin bands does not include

(−1, j0) for ω ∈ [0,∞).

Obviously, we cannot guarantee these two conditions in the

design of our PID controller design scheme because we have

to treat the design problem on the finite frequency point set

Ωi. However, it might be useful to consider the attainability

of these conditions from practical sense though it is imperfect

from theoretical point of view. To this end, we consider the

following procedures.

(1) Suppose that the Nyquist plot of gMi(jω) looks

at (−1, jω) on ω ∈ [0,∞) and diagonal constraint

frequency ωMcli
be phase cross-over frequency of

gMi(jω). Further suppose that qii(jωMci
) lo-

cates inside the small region of the circle (cen-

ter; gM (jωMci
), radius; ri(jωMci

)). Then, it is

expected that the Nyquist plot of qii(jω) takes a

position to look at (−1, j0) to the left hand side

for all ω ∈ [0,∞).

This condition can be written on Ωi as follows:

∣∣∣∣∣gMi(jωMci
)−

m∑
p=1

gip(jωMci
)cpi(jωMci

)

∣∣∣∣∣

2

+

∣∣∣∣∣gMi(−jωMci
)−

m∑
p=1

gip(−jωMci
)cpi(−jωMci

)

∣∣∣∣∣

2

≤
∣∣ri(jωMci

)
∣∣2 +

∣∣ri(−jωMci
)
∣∣2 , i = 1, · · · , m

(12)

where radius ri(jωMci
) is given by

ri(jωMci
) = δi

∣∣gMi(jωMci
)
∣∣ , δi > 0 (13)
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δi

∣∣gMi(jωMci
)
∣∣ <

∣∣1 + gMi(jωMci
)
∣∣ . (14)

(2) If the circle with radius
∑m

r=1
r 6=i

|qri(jωnik )| cen-

tered at |1 + qii(jωnik )| does not include (−1, j0)

on non-diagonal constraint frequency set Ωndi =

[ωni1
, · · · , ωniP

], 0 < ωnik < ∞, i = 1, · · · , m, then

the condition 2 is satisfied at least on Ωndi .

Of course, this condition is insufficient from the theoretical

view point. However, it is practically sufficient if we can

choose sufficiently large number of Ωndi . The above state-

ment is formulated as follows:

∣∣∣∣∣1 +

m∑
p=1

gip(jωnik )cpi(jωnik )

∣∣∣∣∣

2

+

∣∣∣∣∣1 +

m∑
p=1

gip(−jωnik )cpi(−jωnik )

∣∣∣∣∣

2

≥ αi





∣∣∣∣∣∣∣

m∑
q=1
q 6=i

∣∣∣∣∣
m∑

p=1

gqp(jωnik )cpi(jωnik )

∣∣∣∣∣

∣∣∣∣∣∣∣

2

+

∣∣∣∣∣∣∣

m∑
q=1
q 6=i

∣∣∣∣∣
m∑

p=1

gqp(−jωnik )cpi(−jωnik )

∣∣∣∣∣

∣∣∣∣∣∣∣

2


(15)

αi > 1, i = 1, · · · , m, ωnik ∈ Ωndi

In the following, we summarize the MIMO PID parameter

tuning algorithm mentioned above.

Step 1. Estimate the frequency response of G(s) on

Ωi, i = 1, · · · , m.

Step 2. Give the diagonal reference model GM (s).

Step 3. Select diagonal constraint frequencies ωMcli
and

non-diagonal constraint frequency set Ωndi (i =

1, · · · , m).

Step 4. Give the design parameters δi, αi and γi (i =

1, · · · , m).

Step 5. Solve optimization problem under stability con-

straints formulated in the following:

”minimizeJi(�i) with respect to �i

subject to constraints Eq.(12) and Eq.(15) .”

Note: Step 5 is attainded by solving a non-linear program-

ing problem defined above. Here we used a MATLAB Tool

Box[11].

4. Experiment
4.1. Experimental equipment

We examine and evaluate the effectiveness of the MIMO PID

parameter tuging algorithm derived in the preceding section

by using the liquid level process shown in Fig.3. In Fig.3,

y1(t) and y2(t) are liquid level increments from steady states

of Tank1 and Tank3, respectively. u1(t) and u2(t) describe

the control inputs of the system. Each tank includes solid

cylinder and/or cone. Note that the section of Tank3: C3

u1(t) (Pump1)
Tank2

Tank1Tank3

y1(t)

u2(t) (Pump2)

y2(t)

�
0.160

�
0.20

0.
45

0

0.
50

0.
20

�

H
3
(
t
)

h
3

H

C3

C3max

Liquid level process Tank3
Fig. 3. Liquid level process

varies with respect to the change of y2(t). That is, Tank3

has the following nonlineality:

C3 = C3max − πh2
3 tan2(θ)[m2] . (16)

where h3 = H3(t)−H, 0 < h3 ≤ 0.05[m], θ = 0.309[rad/sec].

This nonlinearity is neglected in the transfer function ap-

proximation.

4.2. Controller design

(1) Process identification (determination of G(jωk))

It is necessary to determine G(jωk), not G(jω), at finite

frequency points ωk for applying the above stated method.

Unfortunately, different from the mechanical system’s case,

it is rather difficult to obtain frequency response data in

process systems. Instead, we utilize the result of step re-

sponse data. Here we used the so-called Prony’s method to

obtain the transfer function matrix of the process from the

step response data. This procedure was recently developed

by authors[12], [13]. As a fact, we obtained the following

transfer functions:

g11(s) =
13.3s + 0.6915

s2 + 0.01654s + 3.148× 10−5
(17)

g12(s) =
34.9953s + 0.5240

s2 + 0.0179s + 3.5313× 10−5
(18)

g21(s) =
0.195

s2 + 0.02913s + 3.109× 10−5
(19)

g22(s) =
35.24s + 0.5343

s2 + 0.01813s + 3.621× 10−5
. (20)

Bode diagrams of Eqs.(17) - (20) are shown in Fig.4.
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Fig. 4. Bode diagrams of G(jω)

788



(2) Selection of reference model

First, we select diagonal reference model gMi(s). From the

preceding facts, Nyquist plot of gMi(s) must have enough

gain and phase margin because we have to take into the

sufficient stable margin from the view point of Gershgorin

circle. Here we choose a closed-loop reference model such as

GMcl(s) = diag

[
ω3

MOi

s3 + ζiωM0is
2 + ζiω2

M0i
s + ω3

M0i

]

i=1,2

.

It corresponds to the binomial coefficient model when ζi = 2

and its cross-over frequency is: ωMci
=
√

ζiωM0i . It is noted

that the corresponding open-loop reference model is

GM (s) = diag

[
ω3

M0i

s3 + ζiωM0is
2 + ζiω2

M0i
s

]

i=1,2

.

In this example, we set

ωM01 = 0.0983 [rad/sec] ,

ωM02 = 0.0856 [rad/sec] .
(21)

So that the reference model is given as follows:

GM (s) =

[
0.000512

s3+0.24s2+0.0192s
0

0 0.000343
s3+0.21s2+0.0147s

]
, (22)

and the cross-over frequencies of the reference model become

ωMc1
= 0.139 [rad/sec],

ωMc2
= 0.121 [rad/sec] .

(23)

In this case, gain margin and phase margin of gMi(s) become

20[dB] and 1.4[rad/sece], respectively. Taking into consider-

ation that the gain margin is about 3 ∼ 10[dB] and phase

margin is 0.35[rad/sec] in usual case, the selected referense

model is considerably stable.

(3)Comments on the selection of matching frequencies

(3.1) Ωi.

According to the reference[9], the number of matching fre-

quency Ni must satisfy the inequality

Ni ≥ 3m

2
. (24)

In this example, we took the minimum number: Ni = 3.

Interval of 3 frequency points are selected equivalently in

logarithmic scale. It is also recommended to choose these 3

points are smaller than the value of ωMci
[7]. Here we select

Ωi =
[
1.0× 10−4, 3.16× 10−4, 1.0× 10−3

]
i=1,2

[rad/sec] . (25)

(3.2) Diagonal constraint frequency and phase cross-over

frequency.

Ωd1 = 0.139, Ωd2 = 0.121 [rad/sec] . (26)

Ωnd1 = 0.139, Ωnd2 = 0.121 [rad/sec] . (27)

(3.3) Other weighting parameters.

δi = 1.0, αi = 6.0, γi = 0.1, i = 1, · · · , m . (28)

(4) Optimal PID controller parameters (Result of

computation)

Result of computation, 4 PID controller parameters �i are

given as follows:

k11 = [6.14× 10−4, 0.0166× 10−4, −1.69× 10−3]

k12 = [−3.89× 10−4, −0.0147× 10−4, −1.83× 10−2]

k21 = [0.230× 10−4, −0.00670× 10−4, −2.37× 10−3]

k22 = [4.76× 10−4, 0.0217× 10−4, −2.71× 10−3]

(29)

where kij = [kPij , kIij , kDij ], i, j = 1, 2.

4.3. Result

(1) Matching and Stability

To confirm the satisfaction of partial model matching, fre-

quency response of Q(jω) is calculated and compared with

frequency response of GM (jω). The results are shown in

Fig.5 and Fig.6 by Bode diagrams. In these figures, solid line

shows Q(jω), dashed line shows GM (jω) and circle shows

frequency response at matching frequencies. Though it is not

necessary that calculating frequency responses which corre-

spond to matching frequencies, entire frequency response are

shown on Fig.5. To confirm the satisfaction of conditions 1

and 2, we give Fig.7 and Fig.8. These graphs show the sat-

isfaction of conditions 1 and 2.
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Fig. 5. Matching of Loop Transfer Function between

G(s)C(s) and GM (s) (Gain)
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Fig. 8. Gershgorin Disks for 1st and 2nd Rows of G(s)C(s)

From these results, we can conclude that the control system

was designed to achieve model matching on wide frequency

range although the number of matching frequencies is only

a few points.

(2) Step responses

Case1-1

In Case1-1, reference input uM (t) was set as follows:

uM1(t) = 0.01, uM2(t) = 0.0 [m] . (30)

Case1-2

In Case1-2, reference input uM (t) was set as follows:

uM1(t) = 0.0, uM2(t) = 0.01 [m] . (31)
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1)
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Fig. 10. Outputs of the plant and the reference model

(Case1-2)

Fig.9 and Fig.10 show the result of Case1-1 and Case1-2, re-

spectively. In these figures, solid line shows the plant output,

dash line shows the reference model output.

From these results, we can conclude that decoupling and

tracking performance are both well attained in the experi-

ments. It is noted that the step inputs are small enough so

that the linearlity of the plant are kept in both cases.

To examine the tolerance concerning nonlinearlity, we exe-

cuted the following experiments Case2-1, Case2-2. As being

shown in Fig.3, the section of Tank3 varies with y2(t). Ta-

ble1 shows actual section changes corresponding to measured

y2(t).

Table 1. Nonlinearity of Tank3’s section area

C3[m
2] with respect to y3(t)[m]

Case.1-2 Case.2-2

y2(t) C3 y2(t) C3

Initial 0.194 0.0248 0.186 0.0255

steady state 0.204 0.0239 0.226 0.0215

Note that from Table.1, the rate of section change of Tank3

is 15.6% in Case1-2, though it is 3.6% in Case2-2. This

facts mean that the rate of time constant change of Tank3

approximated to first-order lag system is 15.6% in Case1-2,

though it is 3.6% in Case2-2.

Case2-1
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In Case2-1, reference input uM (t) was selected as follows:

uM1(t) = 0.04, uM2(t) = 0.0 [m] (32)

Case2-2

In Case2-2, reference input uM (t) was selected as follows:

uM1(t) = 0.0, uM2(t) = 0.04 [m] (33)

Fig.11 and Fig.12 show the results of Case2-1 and Case2-2.
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Fig. 11. Outputs of the plant and the reference model

(Case2-1)
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Fig. 12. Outputs of the plant and the reference model

(Case2-2)

Compared to the results of Case1, the obtained result shown

in Fig.11 and Fig.12 are not so good as to the tracking per-

formance. However, taking into account that the step height

of reference output becomes 4 times larger than Case1-1 and

Case1-2, we can say that the control performanse is still kept

well for the increase of nonlinearlity.

5. Conclusion
In this paper, we applied MIMO PID controller tuning

method based on partial model matching on frequency do-

main to liquid level process control. The effectiveness of

the proposed tuning method to process control is examined

through experiments. It must be emphasized that the model

matching between control system and reference system on

frequency domain was well achieved in spite that the num-

ber of matching frequency is only 3. Moreover, we could

confirm that the controller designed by the method was effec-

tive against nonlinearity in some extent in our experimental

experience.
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